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EXECUTIVE SUMMARY

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very
High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP)
Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will
produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a
prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being
evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a
projected plant design service life of
60 years.
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The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the
NGNP, primarily in the areas of:

e High temperature gas reactor fuels behavior
e High temperature materials qualification

e Design methods development and validation
e Hydrogen production technologies

e Energy conversion.

The current R&D work is addressing fundamental issues that are relevant to a variety of possible
NGNP designs. This document describes the NGNP R&D planned and currently underway in the first
three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and
Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in
Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in
Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies
programs are described elsewhere.
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Fuel Development and Qualification

Development and qualification of TRISO-coated low-enriched uranium fuel is a key R&D activity
associated with the NGNP Program. The work is being conducted in accordance with the Technical
Program Plan for the Advanced Gas Reactor Fuel Development and Qualification Program [Bell et al.
2003]. The AGR Program includes work on improving the kernel fabrication, coating, and compacting
technologies, irradiation and accident testing of fuel specimens, and fuel performance and fission product
transport modeling. The primary goal of these activities is to successfully demonstrate that TRISO-
coated fuel can be fabricated to withstand the high temperatures, burnup, and power density requirements
of a prismatic block type NGNP with an acceptable failure fraction. It is assumed that TRISO fuel that is
successful in a block reactor will also be successful in pebble-bed reactors since the particle packing
fraction and the fuel temperatures are somewhat lower in pebble-bed reactors than in block reactors. In
addition, commercialization of the fuel fabrication process, to achieve a cost-competitive fuel
manufacturing capability that will reduce entry-level risks, is a secondary goal of the project.

An underlying theme for the NGNP/AGR fuel development and qualification work is the need to
develop a more complete fundamental understanding of the relationship between the fuel fabrication
process, key fuel properties, irradiation performance of the fuel, and release and transport of fission
products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission
product behavior in the primary circuit are important aspects of this work. Performance models are
considered essential for several reasons, including guidance for the plant designer in establishing the core
design and operating limits, and demonstrating to the licensing authority that the applicant has thorough
understanding of the in-service behavior of the fuel system.

The AGR fuel development and qualification program consists of five elements: fuel manufacture,
fuel and materials irradiations, post-irradiation examination and safety testing, fuel performance
modeling, and fission product transport and source term modeling. Each task is discussed in some more
detail below:

o  Fuel Manufacture. The Fuel Manufacture task will produce coated-particle fuel that meets fuel
performance specifications. This task also includes process development for kernels, coatings,
and compacting; quality control (QC) methods development; scale-up analyses; and process
documentation needed for technology transfer. Fuel and material samples will be fabricated for
characterization, irradiation, and accident testing as necessary to meet the overall goals.
Automated fuel fabrication technologies suitable for mass production of coated-particle fuel at an
acceptable cost will also be developed. That work will be conducted during the later stages of the
program in conjunction with a cosponsoring industrial partner.

o Fuels and Materials Irradiation. The fuel and materials irradiation activities will provide data
on fuel performance under irradiation as necessary to support fuel process development, to
qualify fuel for normal operation conditions, and to support development and validation of fuel
performance and fission product transport models and codes. It will also provide irradiated fuel
and materials as necessary for post-irradiation examination and safety testing. A total of eight
irradiation capsules have been defined to provide the necessary data and sample materials. The
fuel irradiations will be conducted in the Advanced Test Reactor (ATR) located at the INL.

o Safety Testing And Post-Irradiation Examination. This task element will provide the equipment
and processes to measure the performance of AGR fuel under accident conditions. This work
will support the fuel manufacture effort by providing feedback on the accident-related
performance of kernels, coatings, and compacts. Data from the post-irradiation examinations and
accident testing will supplement the in-reactor measurements [primarily fission gas release-to-
birth (R/B)] as necessary to demonstrate compliance with fuel performance requirements and
support the development and validation of computer codes.
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Fuel Performance Modeling. The fuel performance modeling will address the structural,
thermal, and chemical processes that can lead to coated-particle failures. The release of fission
products from the fuel particle will also be modeled, including the effects of fission product
chemical interactions with the coatings, which can lead to degradation of the coated-particle
properties. Computer codes and models will be further developed and validated as necessary to
support fuel fabrication process development. Results of these modeling activities will be
essential to the plant designer in establishing the core design and operation limits, and
demonstration to the licensing authority that the applicant has a thorough understanding of the in-
service behavior of the fuel system.

Fission Product Transport and Source Term Modeling. This task will address the transport of
fission products produced within the coated particles and the fuel element to provide a technical
basis for source terms for AGRs under normal and accident conditions. The technical basis will
be codified in design methods (computer models) validated by experimental data. This
information will provide the primary source term data needed for licensing.

Materials Research and Development

The NGNP Materials R&D Program will focus on testing and qualification of the key materials
commonly used in VHTRs. The materials R&D program will address the materials needs for the NGNP
reactor, intermediate heat exchanger, and associated balance of plant. Materials for hydrogen production
will be addressed by the DOE’s Nuclear Hydrogen Initiative (NHI). Revision 1 of the NGNP Materials
R&D Program Plan [Hayner et al. 2003] was issued in September 2004. The R&D discussed in this
document is based on that plan.

The program is being initiated before the formal design effort to ensure that appropriate data will be
available to support the NGNP design and construction process. The thermal, environmental, and service
life conditions of the NGNP will make selection and qualification of some high-temperature materials a
significant challenge; thus, new materials and approaches may be required. The following materials R&D
areas are currently addressed in the R&D being performed or planned:

Qualification and testing of nuclear graphite and carbon fiber/carbon matrix composites.
Significant quantities of graphite have been used in nuclear reactors and the general effects of
neutron irradiation on graphite are reasonably well understood. However, models relating
structure at the micro and macro level to irradiation behavior are not well developed. Most of the
past work was specific to a specific graphite known as H-451, which is no longer available.
Therefore, the currently available nuclear grade graphites must be tested and qualified for use in
the NGNP.

Development of improved high-temperature design methodologies. The High-temperature
Design Methodology (HTDM) project will develop the data and simplified models required by
the ASME B&PV Code subcommittees to formulate time-dependent failure criteria that will
ensure adequate high-temperature metallic component life. This project will also develop the
experimentally based constitutive models that will be the foundation of the inelastic design
analyses specifically required by ASME B&PV Section IlII, Division I, Subsection NH.
Equations are needed to characterize the time-varying thermal and mechanical loadings of the
design. Test data are needed to build the equations. The project will directly support the reactor
designers on the implications of time-dependent failure modes and time and rate-dependent
deformation behaviors. The project will also develop data for regulatory acceptance of the
NGNP designs.

Expansion of American Society of Mechanical Engineers (ASME) Codes and American
Society for Testing and Materials (ASTM) Standards to support the NGNP design and



construction. Much of this effort will provide required technological support and
recommendations to the Subgroup on Elevated Temperature Design (NH) as they develop
methods for use of Alloy 617 at very high temperatures. ASME design code development is also
required for the graphite core support structures of the NGNP and later for the Ci#/C composites
structures of the core. A project team under Section III of ASME is currently undertaking these
activities.

Improving understanding and models for the environmental effects and thermal aging of the
metallic alloys. The three primary factors that will most affect the properties of the metallic
structural materials from which the NGNP components will be fabricated are the effects of
irradiation, high-temperature, and interactions with the gaseous environment to which they are
exposed. This work is focused on assessing the property changes of the metallic alloys as a
function of exposure to the high-temperature and impure gas environments expected in the
NGNP.

Irradiation testing and qualification of the reactor pressure vessel materials. Some VHTR
designs assume the use of higher alloy steel than currently used for LWR pressure vessels. The
irradiation damage and property changes of these materials must be measured. Therefore, an
irradiation facility that can accommodate a relatively large complement of mechanical test
specimens will be installed in an appropriate material test reactor and used.

Qualification and testing of the silicon carbide fiber/silicon carbide matrix composite materials
needed for the NGNP. This program is directed at the development of C/C and SiC/SiC
composites for use in selected very high temperature/very high neutron fluence applications such
as control rod cladding and guide tubes (30 dpa projected lifetime dose) where metallic alloy are
not feasible. It is believed that SiC/SiC composites have the potential to achieve a 60-year
lifetime under these conditions. The usable life of the C/C composities will be less, but their
costs are also significantly less. The program will eventually include a cost comparison between
periodic replacement of C/C materials and use of SiC/SiC composites.

Assessment of fabrication and transportation issues relating to the NGNP reactor pressure
vessel. Materials issues associated with joining and inspecting heavy section forgings are covered
in this task. This will initially be a scoping study to determine general transportation and
fabrication issues associated with construction of the VHTR.

Development of a materials handbook/database to support the Generation IV Materials
Program. This is required to collect and document in a single source the information generated in
this and previous VHTR materials R&D programs.

NGNP reactor pressure vessel emissivity. The emissivity and other physical and mechanical
properties of layers that form either by high-temperature environmental exposure or artificially
engineered layers on the exterior surface of the NGNP reactor pressure vessel will be measured.
These data are needed for off-normal and accident condition assessments.

Not all of these program elements will be addressed in FY-05, due to limited funding; however, we
envision that all of these areas will be addressed in the outyears. The Materials program plan will be
updated periodically to reflect changes made to the NGNP program.

Design Methods Development and Validation

One of the great challenges of studying, designing, and licensing the NGNP is to confirm that the
intended NGNP analysis tools can be used with confidence to make decisions and to assure all that the
reactor systems are safe and meet their performance objectives. The R&D projects outlined in Section 4
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of this document will ensure the tools used to perform the required calculations and analyses can be

trusted.

Revision 0 of the NGNP Design Methods Development and Validation R&D Program Plan [Schultz
et al. 2004] was issued in August 2004. The R&D discussed in this document is based on that plan and
focuses on developing tools for assessing the neutronic and thermal-hydraulic behavior of the plant. The
fuel behavior and fission product transport models are discussed in Section 2. Various stress analyses and
mechanical design tools will also need to be developed and validated. Those tools will be addressed in a

subsequent revision of this program plan.

The overall methods development process is
outlined in the figure to the right. The
requirements associated with scenario
identification, defining the phenomena
identification and ranking tables, completing the
required development, and performing the
necessary validation studies must all be completed
before performing the required analyses
confidently. The NGNP design has not yet been
selected. Consequently, the R&D process is
focused on scenarios and phenomena identified as
important by the advanced gas-cooled reactor
community, in the past.

The calculational and experimental needs, and
consequently the required R&D, will be focused in
eight distinct areas, based on the relative state of
the software in each:

1. Material cross section compilation and
evaluation

2.  Preparation of homogenized cross-sections

3. Whole-core analysis (diffusion or transport),
detailed heating calculation, and safety
parameter determination

4. Thermal-hydraulic and thermal-mechanical
evaluation of the system behavior

Scenario Identification: Operational and accident
scenarios that require analysis are identified

A

scenario (Phenomena Identification &Ranking Tables)

PIRT: Important phenomena are identified for each

A 4

Validation: Analysis tools are evaluated to determine
whether important phenomena can be calculated

No

Yes L

Development: If
important phenomena
cannot be calculated by

analysis tools, then further
development is undertaken

A 4

Analysis: The operational and accident scenarios that
require study are analyzed

Methods development process

5. Models for balance of plant electrical generation system and the hydrogen production plant

6. Fuel behavior and fission product release

7.  Fission product transport.

The R&D described in Section 4 of this document focuses on Areas 1 through 5. The fuel behavior
and fission product transport is discussed in Section 2 with the other fuel related R&D. Based on the

above areas, R&D projects have been defined.
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ACRONYMS

AGCNR  Advanced Gas-Cooled Nuclear Reactor

AGR Advanced Gas-Cooled Reactor
ANL Argonne National Laboratory
ANS American Nuclear Society

ASME American Society of Mechanical Engineers

ASTM American Society for Testing and Materials

AVR Arbeitsgemeinschaft Versuchsreaktor

B&PV Boiler and pressure vessel

BET Brunauer Emmett Teller (surface area measurement technique)
BWR boiling water reactor

CEA Atomic Energy Commission (France)
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DLOF Decompression Loss of Fluid Accident

DOE U. S. Department of Energy

ENDF Evaluated Nuclear Data Files
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EUROFER Specific European name of a steel alloy
FSAR Final Safety Analysis Report
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Next Generation Nuclear Plant
Research and Development Program Plan

1. INTRODUCTION

In the approaching decades, the United States, the other industrialized countries, and the entire world
will need energy and an upgraded energy infrastructure to meet the growing demands for electric power
and transportation fuels. Anticipating this critical need, the Generation IV international Forum identified
nuclear energy system concepts for producing electricity that excel at meeting the goals of superior
economics, safety, sustainability, proliferation resistance, and physical security [GIF 2002]. One of these
concepts—the Very-High-Temperature Gas-Cooled Reactor (VHTR)—is uniquely suited for producing
hydrogen without consuming fossil fuels or emitting greenhouse gases because of its high outlet
temperature. Working with its international partners in the Generation IV International Forum, the U.S.
Department of Energy has selected this system for the Next Generation Nuclear Plant (NGNP) project, a
project to demonstrate emissions-free nuclear-assisted electricity and hydrogen production by 2017.

The VHTR performance goals are:
*  Plant overnight construction cost: <$1,000/kW,
*  Electricity generation cost: <1.0¢/kW-hr, and

*  Hydrogen cost: <$1.50/gallon — gasoline equivalent.

1.1 Hydrogen Production - A Major Administration Initiative

“Hydrogen holds the potential to provide a clean, reliable, and affordable energy supply that can
enhance America’s economy, environment, and security” [DOE 2002]. The U.S. hydrogen industry
currently produces 9 million tons of hydrogen per year for use in chemicals production, petroleum
refining, metals treating, and electrical applications. Nine million tons of hydrogen per year is enough to
fuel 20 to 30 million fuel cell cars, or enough to power 5 to 8 million homes [DOE 2002]. The current
use is experiencing rapid growth as more
and more hydrogen is used to convert the
lower-cost Western Hemisphere heavy
crude oils to gasoline.

As shown in Figure 1-1, oil is not
being discovered at a rate sufficient to
meet demand [Nature 2004]. We are
heading for a hydrogen transport
economy; the only questions are (1) the
form of hydrogen in the vehicle (gasoline,
methanol, hydrogen, etc.) and (2) where it
is used (refinery, tar sands plant, vehicle).

Billions of barrels

Although hydrogen is the most
abundant element in the universe, it does
not naturally exist in its elemental form in
large quantities or high concentrations on
Figure 1-1. Worldwide oil discoveries plotted in earth. Steam reforming of methane
billions of barrels of oil per year. accounts for more than 95% of the current
hydrogen production in the United States.

1930 1950 1970 1990
Year



Unfortunately, steam methane reforming diverts valuable natural gas from home heating uses and releases
large quantities of carbon dioxide into the atmosphere. Hydrogen production currently uses 5% of the
natural gas consumed in the United States. A much more environmentally friendly method of producing
hydrogen would be to crack water at high temperatures using nuclear heat or solar energy.

1.2 Very-High-Temperature Gas-Cooled Reactor

The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum
reactors with an outlet temperature of up to 1000 °C [MacDonald et al. 2004]. As indicated in Figure 1-2,

an outlet temperature near 1000 °C Temperature (°C)
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applications, including hydrogen Iron Manufacturing == , , |

. (Direction Reduction Methods) (with a Blast Furnace)
PrOdUCtlon- Electricity Generation —————""—"1 (Gas Turbine)

Gasification of Coal 1]
The NGNP reactor core could [C=——————"1 Hydrogen (IS Process)
be either a prismatic graphite block ! | Hydrogen (Steam Reforming)
— Ethylene (naphtha, ethane)
type core or a pebble bed core. =" Styrene (ethylbenzene)
U f 1 . d 1 1 . 1  E— Town Gas
se ot a liquid salt coolant 1s also == Petroleum Refineries

being evaluated. The NGNP will E———1 De-sulfurization of Heavy Oil
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Nuclear Heat
transferred to the hydrogen plant
through an intermediate heat
exchanger. The reactor thermal Figure 1-2. Temperature requirements for various process
power and core configuration will heat applications.

be designed to ensure passive
decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-
through very high burnup low-enriched uranium fuel cycle.

The basic technology for the NGNP has been established in former high-temperature gas-cooled
reactor plants (e.g., DRAGON, Peach Bottom, Albeitsgemeinschaft Versuchsreaktor [AVR], Thorium
Hochtemperatur Reaktor [THTR], and Fort St. Vrain). These reactor designs represent two design
categories: the pebble bed reactor and the prismatic modular reactor. Commercial examples of potential
NGNP candidates are the Gas Turbine-Modular Helium Reactor (GT-MHR) from General Atomics [GA
1996], the High Temperature Reactor concept from AREV A [Copsey et al. 2004], and the Pebble Bed
Modular Reactor (PBMR) from the PBMR consortium [Nicholls 2000]. Furthermore, the Japanese High-
Temperature Engineering Test Reactor (HTTR) and Chinese High-Temperature Reactor (HTR) are
demonstrating the feasibility of the reactor components and materials needed for the NGNP. (The HTTR
reached a maximum coolant outlet temperature of 950 °C in April 2004.) Therefore, the NGNP program
focuses on building a plant to publicly demonstrate the safety and economics of the VHTR, rather than
simply confirming the basic feasibility of the concept.

One or more technologies will use heat from the high-temperature helium coolant to produce
hydrogen. The first technology of interest is the thermo-chemical splitting of water into hydrogen and
oxygen. There are a large number of thermo-chemical processes that can produce hydrogen from water,
the most promising of which are sulfur based and include the sulfur-iodine, hybrid sulfur-electrolysis, and
sulfur-bromine processes. Schematics of those three processes are shown in Figure 1-3. Note that all
three processes require the heat to be delivered at a temperature of at least 850 °C.
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Figure 1-3. Schematic of the sulfur-iodine, hybrid sulfur-electrolysis,

and sulfur-bromine processes

The second technology of interest is thermally assisted electrolysis of water. The high-efficiency
Brayton cycle enabled by the NGNP may be used to generate the hydrogen from water by electrolysis.
The efficiency of this process can be substantially improved by heating the water to high-temperature
steam before applying electrolysis.

1.3 NGNP Implementation

The objectives of the NGNP Project are to:

*  Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear
Regulatory Commission Demonstrate safe and economical nuclear-assisted production of hydrogen
and electricity.

The DOE published a draft strategy for developing and demonstrating the NGNP on May 27, 2004.
Informed by public comment on the draft strategy, the Department is now formulating its final acquisition
strategy. The strategy is designed to maximize industrial and international cost-shared participation. The
Department contemplates the use of a financial assistance vehicle to enter into a cost-shared cooperative
agreement with an industrial partner.

The preliminary rough order of magnitude cost estimate range for the NGNP is $1.8 to 2.4 billion.
The scope of the work will be divided into five phases with provisions for go/no-go decisions at the end
of each phase:

1.

Project integration and formation

2. Research and preliminary design
3. Development and final design

4.
5

. Project close-out.

Construction and viability testing



The following tasks will be completed in Phase 1:

*  Conduct a design competition for the NGNP reactor technology and select the NGNP technology
*  Prepare a “Research and Development Plan” that supports the selected technology

*  Prepare a “Fuel Plan” detailing the acquisition of licensed fuel for the NGNP

*  Prepare a “Business Plan” that details the successive phases of the project and identifies the members
of the international consortium that will cost share the project and lead its development.

The DOE will be substantially involved in the technology selection process and have ultimate approval.
The Department will require quarterly reporting in accordance with 10CFR600, and the program will be
run consistent with DOE Order 413.3

The Department will provide its laboratory system, led by the Idaho National Laboratory (INL), as
the principal resource for conducting NGNP R&D. The DOE laboratories will perform R&D that will be
critical to the success of the NGNP, primarily in the areas of:

1. High temperature gas reactor fuels behavior
2. High temperature materials qualification

3. Design methods development and validation
4. Hydrogen production technologies
5

Energy conversion
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and energy conversion technologies programs are described elsewhere. The current R&D work is
addressing fundamental issues relevant to a variety of possible NGNP designs. When the NGNP
technology is selected, the DOE R&D will focus on that selection.



1.4 International Collaborations

The Generation IV International Forum (GIF) was formed to define and implement an advanced
generation of nuclear energy systems. Ten countries and Euratom have come together in the GIF to
develop future-generation nuclear energy systems that can be licensed, constructed, and operated to offer
competitively priced and reliable energy products while satisfactorily addressing nuclear safety, waste,
proliferation, and public perception concerns. The participating countries are Argentina, Brazil, Canada,
France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the Unite Kingdom, and
the United States. In 2002, the GIF identified six reactor systems that would best support these goals and
established System Steering Committees for four of the six reactor systems.

These steering committees are charged to

*  Guide the development of the system, including the definition of the system baseline and the
required technologies.

*  Assess the system designs versus the Generation [V goals and criteria for the purpose of evaluating
the R&D progress and the merits of their system versus others.

»  Establish and maintain an R&D plan for the long-term development of their system.

* Integrate and provide oversight for R&D projects that are in the R&D Plan. This includes defining
the work scope required, reviewing proposed schedules and budgets, recommending performing
Member institutions, and defining and maintaining important interfaces with other projects.

*  Conduct the program in a manner that allows individual GIF Members to manage their intellectual
property within their own established rules and guidelines. The Steering Committee does not have a
role in managing intellectual property.

*  Review and recommend participation levels of GIF Members and utilization of resources from
outside the GIF.

*  Request and review summary information about the R&D projects within the program for their
System.

*  Annually report on the progress of
R&D for their system to the Policy
Group.

Policy Group

Generation IV

The VHTR System Steering
Committee shown in Figure 1-5 will

VHTR System Steering Committee

advance the VHTR viability and
performance by coordinating R&D among
the member countries, thereby allowing
maximum advancement for the dedicated
resources. Timing of the R&D will also be
coordinated in order to best leverage each
country’s contribution.

To conduct this detailed level of
coordination of scope and schedule, Project
Management Boards report to the VHTR
Steering Committee, having been
established to define collaborations in
specific areas. Four project management
boards are now active for the VHTR—

Members
Finis Southworth- USA
Frank Carre- France
Tetsuaki Takeda- Japan
Tim Abram— United Kingdom
Jonhgwa Chang—- Korea
Romney Duffey— Canada
Wolfgang Hoeffelner— Switzerland
Dieter Matzen— South Africa
Werner von Lensa- Euratom

Figure 1-5. The VHTR System Steering
Committee reports to the Generation IV
International Forum Policy Group.




Materials and Components, Fuel and Fuel Cycle, Hydrogen Production, and Design and Safety Methods.
The members of the four Project Management Boards are shown in Figure 1-6. Each project management
board will develop multiple collaboration agreements within their area.

Materials & Design & Safety Fuel & Fuel Cycle
Components Methods

Euratom - J Pirson/ Canada- R Verrall
Canada— P Chow A van Heek Euratom— W von Lensa /
Euratom— D Buckthorpe/ France— P Anzieu M Futterer
J van der Laan Japan - K Kunitomi France — P Brossard
France- P BII'IOt Korea— W J Lee Japan- K Sawai
Japan-Y Tachibana South Africa— J Slabber Korea— CB Lee
Korea— W S Ryu USA - P MacDonald South Africa— J Slabber

South Africa— K Smit /H Khalil United Kingdom— T Abram
Switzerland— W Hoeffelner USA - D Petti

UK - D Buckthorpe
USA - G Hayner /
W Corwin

Hydrogen Production

Canada- A Miller
Euratom— M T Dominguez
France— P Anziet
Japan - K Onuki
Korea-Y J Shin
USA - P Pickard /

J Kolts

Figure 1-6. Active project management boards developing
collaboration agreements for the VHTR.

The member countries of the Generation IV Forum are expected to sign a framework agreement
(government to government) in the next few months that will establish the legal agreements allowing
productive, yet protected, sharing of research and development. After the framework is in place, the
system level agreement can be enacted for the nine member countries that have joined the VHTR Steering
Committee. Lastly, collaboration agreements will be developed under each project board that will detail
the shared research and budget and schedule commitments. This mechanism is expected to result in
significant benefit to the NGNP, which is the first announced demonstration of the VHTR. Thus, it is
expected that up to one half of the NGNP-related R&D may be contributed by the international
participants on the VHTR Steering Committee.

1.5 Estimated Overall Project Costs and Schedules

Table 1-1 below shows the NGNP required budget over the next twelve years to support NGNP
initial operation in 2017. The numbers for FY-03 and FY-04 were actual costs. The FY-05 numbers
include carryover from FY-04 and also $1 million from AFCI to support the fuel program. The
remaining budget figures represented below are initial estimates which may change when the
preconceptual designs are completed such that the R&D can be focused on a specific core design, and
engineering estimates can be made. No contingencies have been added to the estimates below.



Table 1-1. NGNP Annual Budget Profile
NGNP Budget Profile (2017)
Activity FY-03 FY-04 FY-05 FY-06 FY-07 FY-11 FY-12 FY-13 FY-14 FY-15 FY-16  FY-17

Research and Development
Fuel Development and Qualification 60000 6287 13964] 130000 20000 240000 25000 25000 250000 160000 120000 8400 10300 9500 8500 222,951
Materials Testing and Qualification 480 2573 6830 9200 23500] 33500 395000 456000 368000 5200 3450 2,000 213,633
Design Methods and Validation 1,200 88 2671 250 6000 6000 6000 6900 5700[ 5400 50 43,319
Design and Trade Studies 7,300 50000 24000 40000 45000 33,000 154,300
Public Outreach 200 300) 500 500 500 500 500 500) 500) 500 500) 500 500 6,000
NGNP Subtotal] 7,680 9,758 30965 30,00 74,000 109,000 116,000 111,000 68,000 27100 16,000 10900 10,800 10,0000 9,000 640,203
Hydrogen Development 30000 40000 90000 18000 40000] 400000 400000 400000 42000 15900 70000 41000 4200] 50000 6,000] 278,200
DOE SHARE SUBTOTAL 10,680 13,758 39,965 48,000 114,000 149,000 156,000 151,000 110,0000 43,000 23,0000 150000 15000 150000 15000 918403
INDUSTRY SHARE | | 350000 40000 45000 50,0000 90,0000 160,000 1400000 850000 85000] 850000 850000 900,000
[ Total] 10,680 13758 39, 48,0000 149,000 189,000 201,000] 201,000] 200,000] 203,000 163,00( 100,000 100,000 100,000 100,000 1,818,403

Figure 1-7 provides a graphic profile of Research and Development funding needs against the
assumed project time line. Note that the major portion of R&D work is completed before completion of
Final Design.
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Figure 1-7. NGNP Research and Development Funding Profile.

The NGNP Summary Level Schedule is shown in Figure 1-8. The schedule shows the major
activities under each of the major research and development areas at the top of the schedule, and the
assumed design and construction activities are shown in the lower half. The schedule has been prepared
from the latest R&D program plans for Fuel Development, Materials Selection and Qualification, and
Design Methods and Safety. Energy Conversion is still in planning, and a placeholder has been inserted.
The following assumptions were made in preparation of the schedule:

*  The Design and Construction schedule will follow the principles of DOE O 413.3-1.

*  Items shown under the Design and Construction (including the Environmental Impact Statement and
Safety Analysis) will be performed by or controlled by the industrial partner as determined in the
Acquisition Strategy.

*  The industry partner will be the NRC licensee.

¢ The Reactor Pressure Vessel will be needed about 12 to 18 months into construction, and a 38- to 40-
month procurement schedule is needed.



I |Task Mame Start Finish

' |Research and Development Oct1'84)  Dec 2917
2 Fuel Development Oct 104 Dec20°17
3 Fuel Supply Fabrication Development Oct 1704 Oct 1712
4 Fuel Fabrication Small Coater for AGR 1 Gt 1'04 Sep 106
5 Coater Scaleup and Fuel Fabriation for AGR 2.3 4 Jun & '06 Sep 308
6 Fuel Fabrication AGRS-3 Jan 212 Oct112
7 Fuels and Materials Irradiations Jan 27 Oct14°16
8 AGR 1 Irradiation - Shakedown Small Coater Fusl Jan12'07 Jul14'08
9 AGR 2 Irradiation - Large Coater fuel Perdormance Jan30'09 Aug 2111
10 AGR 3 Irradiation - Fission Product Transport Data Hug 309 Feh 142
1 AGR 4 liradiation - Fission Product Transport Data Julano Jan 2313
12 AGR 5 & B Irradiation - Fuel Qualification Oct113 Mar 3118
13 AGR 7 &8 Iradiation - Fuel Peformance & Fission Prod  Apr1814) Oct 1446
14 Post Iradiation Examination and Safety Testing Jun 2409 bar 2417
18 Fuel Performance Modeling - Code Development Oct1'04 315
18 V&V of Fuel Performance Code dul115 Dec2917
7 Fission Product Transport and Source Term Cct1'04 14
18 Figsion Product Transport & Source Term Code Wi D0 a3 T
18 Praliminary MRC Topical on fuel Performance Dec31'14)  Dec 314
a0 Final MR Topical on Fugl Performance AL ECARL]
2 NGNP source Term Validated Mar 31017 Mar 3117
22 Fuel Performance Model Validated Dec2017  Dec2917
23 First Core Fuel Fabrication Dot 214 oot 318
2 Complete the NGNP Fuel Qualification Program Dec 237 Dec2917
2 Materials Selection & Qualification Ocet 194 Feb6°15
8 Graphite Oct1'04]  Dec 1710
27 Select graphite Oct1'04 Feb 405
28 Procure graphite Feh 705 May 1105
0 Design ATR test Oct1'04  Oct14'05
3 Itradiation Creep Test in ATR Oct17'05)  Mow 2108
3 Wodel Development Feh 705 Mar 2 07
32 Graphite Design Methodology MarS'07| Mar 2709
33 Post Irradiation Evaluation (HFIR) Oct1'04)  Oct27'05
34 High Temp Irradiation Tests Mov13'06  Dec17'10
£ GIF Irradiation Review Oct4'05  Dec3 07
38 Hi Temp Design Methods Oct1°04  Jan1315
& Data Assembly Oct1'04  Oct14'05
3 Testing of Alloy 617 Oct1'04  Jan 1113
£l Testing of Alloy 617 Welds Oct1'04  Dec12M2
40 Develop Methods Oct4'05  hov10'08
H Develop Simplified Methods Oct4'05  Mov10'08
42 Testing other Alloys Oct4'06  Jan13'1s5
43 Testing other Alloys Welds Oct4'05  Dec12'14
44 Code Case Support Oct 104 Dec 301
45 ASME High Termp Metals oct1'04)  Dec3n'i
46 ASME Graphite Oct1'04  Dec3n i
4 Air Oxidation Oct 4'05 Oct 2907
48 BET Surface Method Oct4'05  Oct29'07
4 ASTM SiC/SiC Oct1'04)  Dec30'd
sa ASTM Fracture Toughness Oct1'04  Oct27'08
al Environmental Testing and Thermal Aging Oct 1794 Dec 30°11
52 Evaluate existing data Oct1'04 Jul130s
53 Refurbish creep-fatigue equipment it 104 Jul30s
54 High Yelocity Heliurmn Testing Oct 104 Nov 807
55 Low Yelocity Helium Testing Oct 104 Mo 907
6 High Temp Long Term Aging Tests Oct1'04)  Dec3n i
57 Long Term Creep Testing in Helium Oct1'04  Dec3n'
B Reactor Pressure Vessel Material Testing Oct 405 Dec 31°12
59 Select Facility Oct 4'05 Oct 1006
50 Fabricate Testing Hardware Oct 4'05 Oct 2907
61 Irradiation of RPY materials Oct30'07 | Dec 312
62 Composites Development Oct1°04  Dec 1710
63 Helium Environment on SiC/Sic Gt 104 Oct 1405
64 Tube Geometry Tests Oct1'04  Oct14'05
€5 SiCSIC Control Rod Tests Oct17'05)  Dec 1740
68 C/C Control Rod Testing Ot 104 Now 9'07
67 C/C Other Structures Testing Nov12'07 | Dec17'0
& Database Handbook Octd'05 Dec17H0
4 RPY Transport and Fabrication Oct1'04 Des 170
7o RPY Emissivity Oct4'05)  Oct20'07
n Metallic Core Internals Oct4'0s Oct2907
2 Hat Duct & Insulation Oct ¢ '07 Dec 512
73 IH*A & Piping OctG'05  Dec19'14
e IHx Pressure Yessel OctB'06 | Dec1a'14
s Administration Oct 104 Fel 615
L Design Methods and Validation Oct1%01)  Sep 282
9 Energy conversion (Turbine Development) Cct3 05| May7H0
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Figure 1-8. NGNP Summary Schedule.




Note that when the NGNP Acquisition Strategy is developed and approved, expect changes in order

for the R&D planning to correlate with the industry partner’s plans. At that time some issues will need to
be resolved. Some of the major issues with the current planning are as follows:

Fuel qualification irradiations ATR-5 and ATR-6 will be completed in 2015. Therefore the first core
load of fuel must be fabricated in parallel with the final qualification irradiations and post-irradiation
examinations.

A commercial fuel manufacturing facility needs to be considered in the overall planning.

The assumptions for the reactor pressure vessel procurement require that Materials R&D and vessel
design be completed by the end of FY-09 in order to support the 2017 schedule above. The current
R&D schedule will need to be compressed and funding will have to be accelerated if the vessel is not
made of SA508.

Design Methods and Safety R&D schedule and funding will also need to be accelerated to support
preliminary design, the preliminary safety analysis, and the NRC construction permitting process.

The major milestones, as outlined in the Office of Nuclear Energy, Science and Technology Program

Plan GPRA Unit 14: “Develop New Nuclear Generation Technologies,” are as follows:

FY 2006: Complete the Pre-conceptual Design (CD-0)

FY 2007: Complete the Conceptual Design (CD-1)

FY 2009: Complete the Preliminary Design (CD-2)

FY 2012: Start Construction of the NGNP (CD-3)

FY 2013: Complete the NGNP Fuel Qualification Program
FY 2016: Obtain the NRC Operating License

FY 2017: Begin NGNP Operations (CD-4).



2. NGNP FUEL DEVELOPMENT AND QUALIFICATION

The fuel for the NGNP builds on the potential of the TRISO-coated particle fuel design demonstrated
in high temperature gas-cooled reactors in the UK, U.S., Germany, and elsewhere. The TRISO-coated
particle is a spherical-layered composite about 1 mm in diameter. It consists of a kernel of uranium
dioxide (UO,) or uranium oxycarbide (UCO) surrounded by a porous graphite buffer layer that absorbs
radiation damage and allows space for fission gases produced during irradiation. Surrounding the buffer
layer are a layer of dense pyrolytic carbon called the inner pyrolytic carbon (IPyC), a silicon carbide (SiC)
layer, and a dense outer pyrolytic carbon layer (the OPyC). The pyrolytic carbon layers shrink under
irradiation and create compressive forces that act to protect the SiC layer, which is the primary pressure
boundary for the microsphere. The inner pyrolytic carbon layer also protects the kernel from corrosive
gases present during deposition of the SiC layer. The SiC layer provides primary containment of fission
products generated during irradiation and under accident conditions. Each microsphere acts as a mini
pressure vessel, a feature intended to impart robustness to the gas reactor fuel and plant safety system.

The baseline fuel kernel for the NGNP is low-enriched (about 15% U-235 in the prismatic block
reactor version of the NGNP and about 8% in the pebble bed version) UCO instead of UO, owing to
performance issues associated with the UO, fuel at high power, temperature, and burnup. At the high
power densities expected in the NGNP (>6 W/cm’), the associated large thermal gradients can drive
kernel migration in UO,-coated particles. Migration of the kernel through the buffer and inner
pyrocarbon layers and subsequent contact with the SiC layer generally results in extensive damage to the
SiC layer. Furthermore, at the high burnups proposed for NGNP (15 to 20% FIMA), the CO pressure in a
UQO, fuel particle can be substantial, resulting in particle failure, especially under accident conditions.

The high NGNP fuel temperatures (maximum time averaged temperature ~1250 °C) increase the effect of
both of these mechanisms. UCO was selected because the mixture of carbide and oxide components
precludes free oxygen from being released due to fission. As a result, no carbon monoxide is generated
during irradiation, and little kernel migration (amoeba effect) is expected. Yet, like UO,, the oxycarbide
fuel still ties up the lanthanide fission products as immobile oxides in the kernel, which gives the fuel
added stability under accident conditions.

For the pebble bed version of a NGNP, the coated particles are over-coated with a graphitic powder
and binders. These over-coated particles are then mixed with additional graphitic powder and binders and

then molded into a 50-mm-
diameter sphere. An additional
5-mm fuel free zone layer is
added to the sphere before
isostatic pressing, machining,
carbonization, and heat-
treating.

For the prismatic version
of the NGNP, a similar process
is envisioned, where the over-
coated particles are mixed with
graphitic powder and binders
to form a cylindrical compact
about 50 mm long and 12.5
mm in diameter. After final
heat treatment, these compacts
are inserted into specified
holes in the graphite blocks.
Figure 2-1 shows a sketch of a

——— Pyrolytic Carbon
| — Silicon Carbide

| —— Porous Carbon Buffer

Uranium Oxycarbide

PARTICLES COMPACTS - FUEL ELEMENTS

Figure 2-1. Cutaway of a TRISO-coated fuel particle and pictures
of prismatic fueled high-temperature gas reactor fuel particles,
compacts, and fuel elements.
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TRISO-coated fuel particle and photographs of fuel particles, compacts, and fuel elements (prismatic
blocks of graphite with fuel compacts and coolant channels) used in the high-temperature gas reactor at
Fort St. Vrain. The Advanced Gas Reactor Fuel Development and Qualification (AGR) Program is
currently focusing on the prismatic fuel form.

2.1 Advanced Gas Reactor (AGR) Program Justification and Need

A recent review [Petti 2003] concludes that there has historically been a difference in the quality of
U.S. and German high temperature gas reactor fuel. This fact is illustrated in Figure 2-2, where the
krypton release rate to birth rate

(R/B) measurements from most of 100503
the U.S. and German TRISO coated / .
fuel irradiation experiments are 100E04 5
plotted versus fast fluence. The /’ o
U.S. Qata from individual . roosas Y ——— e '/4-2
experiments are shown as lines 5
whereas the yellow band in & 100506 s
Figure 2-2 shows the range of the E " f/r / —=—Gra
German data. This difference has I BT
been traced to technical differences - % O HRBISA
. . . . 1% Range of —8— NPRI
in the fabrication processes used in S-NPRIA |

X 1.00E-08 German —8— NPR2
Germany and the United States, as —8— HRB2I
well as differences in the irradiation - data s a2 -
and testing programs in the two ’ e
countries. Review of the fabrication

. 1.00E-10

processes used in Germany and the 0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1LOOE+01
United States to make coated Fast Fluence (* 10725 n/m*2)

particle fuel indicates that the scale  Figure 2-2. Krypton release to birth ratios versus fast fluence
of fuel fabrication and development  from a variety of U.S. and German fuel irradiation experi-

efforts in the last 25 years have been  ments showing the better performance of the German fuel.
quite different. German fabrication

was at an industrial/production scale supporting the German AVR and THTR reactors and providing an
established infrastructure for additional production of high quality fuel in support of HTR-Modul
development. Only about 100 defects were measured in the German high quality fuel among 3.3 million
particles produced in support of HTR-Modul development. The post-Fort St. Vrain U.S. program has
been a mixture of laboratory- and larger-scale fabrication. The initial defect levels varied greatly and
were much greater than those produced in Germany. Also, the U.S. program was scattered and disjointed,
and multiple variables were “attacked” in each irradiation experiment, leading to a situation where it was
not always possible to isolate the cause for poor results.

Comparison of the U.S. and German fabrication processes has revealed many differences. Three
specific technical differences in the TRISO fuel coating layers produced by the respective fabrication
processes have important impacts in terms of performance under irradiation and accident conditions:
pyrocarbon anisotropy and density, IPyC/SiC interface structure, and SiC microstructure.

211 Pyrocarbon Coating Rate

The density and anisotropy of the pyrocarbon layers of the TRISO fuel particle is determined by the
conditions in the coater [Martin 2000]. The German pyrocarbon was deposited at a higher coating gas
concentration, which in turn results in a higher coating rate (~4-6 pm/minute) than generally used in the
U.S. The German pyrocarbon was very isotropic and thus survived irradiation quite well. However, the
German fabrication conditions appear to lead to somewhat greater surface porosity than in U.S.
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pyrocarbon, possibly leading to increased permeability to chlorine gas during the SiC coating process, and
reaction with the UCO kernel. U.S. pyrocarbon has been coated under a variety of conditions. In many
cases, it was coated at very low coating gas concentrations, which results in a lower coating rate (2-4
um/minute), and leads not only to a very dense and impermeable IPyC layer, which is important to
preventing attack of the kernel by chlorine during deposition of the SiC layer, but also to excessive
anisotropy, which can cause cracking of the pyrocarbon under irradiation.

A plot of the irradiation-induced strain as a function of coating rate is shown in Figure 2-3. This plot
indicates that strains induced in irradiated pyrocarbon

are much greater for pyrocarbon coated at very low o Parallelto Perpendicular
. . . . . . It It
coating rates. Post-irradiation examination of many 0020 blane blane
.. . . = 0 25 2 o .
of the U.S. capsules indicate shrinkage cracks in the 3 008 ggi 1825 mme e
. . 0.06f n/m
inner pyrocarbon layer, which has been shown + 004t ]
[Baldwin 1993; Miller 2001; Maki 2002] to lead to £ oo \\L ;
stress concentrations in the SiC layer and subsequent 5 002 o
. . . 8 004} 2
failure of the SiC layer. Furthermore, anisotropy @ 0.061 /5/5/3/’ s
D -
measurements on pyrocarbon have not adequately 2 _8% //—
correlated processing parameters to pyrocarbon e 0G-1 0G-2 Crucible 5
; ; ’ 1350°C
isotropy, anq have not yet proven to !ae areliable Density = 1.95 - 1.99 Mg/m?3
predictor of in-reactor pyrocarbon failure. More P R N S B I (R v

reliable methods of anisotropy characterization are Coating rate (wm/min)
needed to ensure a link between acceptable coating
processing parameters and satisfactory pyrocarbon in-
reactor behavior.

Figure 2-3. Irradiation-induced strains in PyC
as a function of PyC coating rate.

2.1.2 Nature of the IPyC/SiC Interface

Differences in the microstructure and surface porosity between the German and U.S. IPyC also led to
differences in the nature of the bond that existed between the layers. Photomicrographs of the IPyC/SiC
interface in German and U.S. fuel are shown in Figure 2-4. The figure shows that the interface in German
fuel is more tightly bonded because the SiC was deposited into the IPyC, which has apparently greater
surface porosity. The U.S. fuel’s denser, less porous IPyC surface resulted in a smoother, lower strength
bond. The TRISO coating on the German fuel never exhibited debonding under irradiation, whereas
irradiation results indicated that the TRISO coating on the U.S. fuel debonded frequently. The debonding
is believed to be related to the strength of the [PyC/SiC interface and can lead to stress intensification in
the SiC layer, which may cause failure.

Strong

“Fingered” X

IPyC/SiC g .
interface in = US IPyC/SiC
German fue ~interface

Figure 2-4. Comparison of SiC/IPyC interface in German (left) and U.S. fuel.
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21.3 SiC Microstructure

The microstructures of German and U.S. SiC were different, as illustrated in Figure 2-5. The
German process resulted in small equiaxed grains, whereas the U.S. process produced larger columnar
(sometimes thru-wall) grained SiC. This difference in microstructure is believed to be primarily a
function of the temperature used during the SiC coating phase in the coaters, with the U.S. coater
producing SiC at a higher temperature in some or all regions of the coater compared to the German
process. These differences are important from a performance perspective because the smaller-grained
German SiC, with its higher tortuosity, should in principle retain metallic fission products better than the
large thru-wall columnar U.S. SiC with more direct grain boundary pathways through the layer.

German United States

Figure 2-5. Comparison of the microstructure of German and U.S.-produced SiC.

2.1.4 Irradiation Testing

Review of the U.S. and German irradiation programs over the last 25 years indicates that the
irradiation programs were implemented differently, with vastly different results. The focus of the German
program was on UO,-TRISO fuel for the pebble bed reactors AVR and THTR and all future pebble bed

reactor designs, such as the HTR

. U. S. Fuel G Fuel
Modul design. The U.S. program m 1.0E-01 e ML b LTJ,§S|'SO,B|SO
examined many different variants [ 1.0E-02 -

. . . : B US. WAR
(different coatings, different kernels) uE': 1.0E-03 - TRISO/BISO
with apparently few lessons learned % 4 0E-04 | il X L US

. . . j . . .
from one irradiation to the next or X 1 0E-05 A a X o TRISO/TRISO
feedback to the fabrication process. 3 1.0E-06 v o ® . US. TRISO-P
. (@]

Furthermore, the U.S. did not always W 1 0E-07 1 &,
conduct post-irradiation examinations; QL % % German

: - > 1.0E-08 4
photomicrographs were limited from n (Th,U)02

o o 1.0E-09 - TRISO

those examinations that were © 1.0E-10 ® German UO2
conducted; and characterization of the o 1.Ue Us o TRISO

. . . .. erman
layer failures was sometimes sporadic. Irradiation temperature (C)  930-1350 800 - 1320
Even more striking is that the on-line Bumup (%FIMA) 6.3 - 80 7.5-15.6
gas release measurements indicated Fast fluence (10%° n/m? ) 2.0-10.2 0.1-85
that the German fuel exhibits about a

factor of 1000 less fission gas release
under irradiation than the U.S. fuel
under a broad range of irradiation
conditions (temperature, burnup, fluence; see Figure 2-6). Furthermore, the post-irradiation examination
of the U.S. fuel confirmed the more extensive gas release data.

Figure 2-6. Comparison of end-of-life Kr-85m R/B from
historic German and U.S. irradiations.
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In summary, the German fuel was excellent. Of about 340,000 particles tested, there were no in-pile
failures and only a few “damaged” particles from experimental anomalies. The fission gas release that
did occur was attributed only to as-manufactured defects and heavy metal contamination. The U.S. fuel
did not perform very well. There were relatively high numbers of failures of individual layers of the
TRISO coated U.S. fuel and, in many

cases, a significant fraction (~1 to 10%) 100 - {mIPyC Layer _
of the total particles completely failed, - mSiC Layer
(see Figure 2-7; note that individual g I OPyC Layer
layer failure fractions are plotted, not = 10 ¢
TRISO-coated particle failure fractions). L g
A variety of failure mechanisms were ';C-;
noted relating to effects of accelerated e 1= B
irradiation and attributes of the &
fabrication process. 01

This comparison strongly supports D AN e A A A 2 A
the need for process improvement o \*\?"%A W T R
studies for fuel manufactured using. Figure 2-7. Individual layer failures observed during
traditional U.S. methods and potential post-irradiation examination of U.S.-coated particle fuel

scoping irradiations to demonstrate the
effectiveness of any changes in the
process.

over the past 25 years.

2.2 Advanced Gas Reactor Program Structure

Development and qualification of TRISO-coated low-enriched uranium fuel is a key R&D activity
associated with the NGNP Program. The work is being conducted in accordance with the Technical
Program Plan for the Advanced Gas Reactor Fuel Development and Qualification Program [Bell et al.
2003]. The AGR Program includes work on improving the kernel fabrication, coating, and compacting
technologies, irradiation and accident testing of fuel specimens, and fuel performance and fission product
transport modeling. The primary goal of these activities is to successfully demonstrate that TRISO-
coated fuel can be fabricated to withstand the high temperatures, burnup, and power density requirements
of a prismatic block type NGNP with an acceptable failure fraction. It is assumed that TRISO fuel that is
successful in a block reactor will also be successful in a pebble-bed reactor, since the particle packing
fraction and the fuel temperatures are somewhat lower in pebble-bed reactors than in block reactors. In
addition, commercialization of the fuel fabrication process, to achieve a cost-competitive fuel
manufacturing capability that will reduce entry-level risks, is a secondary goal of the project.

The project is co-managed by INL and Oak Ridge National Laboratory (ORNL) against a resource-
loaded critical path schedule with three levels of key milestones. This schedule clearly defines the
activities and deliverables required and determined feasible through early schedule and cost analysis.

Implementation of the quality assurance requirements delineated in the Technical Program Plan will
be in accordance with DOE quality assurance requirements specified in 10 CFR 830, “Nuclear Safety
Management,” Subpart A, “Quality Assurance Requirements,” and in DOE Order 414.1B, “Quality
Assurance.” In addition, all activities that have direct input to irradiation test specimen fabrication and
irradiation campaigns will be conducted in accordance with the national consensus standard ASME NQA-
1-2000, “Quality Assurance Requirements for Nuclear Facility Applications,” published by the American
Society of Mechanical Engineers (ASME).
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2.21 Fuel Manufacture

This program element addresses the work necessary to produce coated-particle fuel that meets fuel
performance specifications and includes process development for kernels, coatings, and compacting;
material characterization and quality control methods development; scale-up analyses; and process
documentation needed for technology transfer. The effort will produce fuel and material samples for
characterization, irradiation, and accident testing as necessary to meet the overall goals. There will also
eventually be work to develop automated fuel fabrication technology suitable for mass production of
coated-particle fuel at an acceptable cost; that work will be conducted during the later stages of the
program in conjunction with cosponsoring industrial partners. Fuel manufacture development is guided
by a detailed fuel product specification established based on historical US and international experience.

Near-term activities focus on production of UCO kernels, coating of particles in a continuous process
using a small (2-inch) laboratory-scale coater, production of fuel compacts, and characterization of the
resulting materials. The goal of the kernel studies is to better define the operating window that will
produce kernels meeting all specifications. For example, studies in early 2005 demonstrated carbon
dispersion parameters that would result in adequate sintered kernel density. Following fabrication of the
AGR-1 kernels, additional kernel development studies are needed to further define the operating envelop
for both broth and sintering parameters relative to the fuel specification and other properties such as
kernel strength and friability, and surface reactivity.

The goal of the initial coating studies is to produce coatings like those produced by the German
program in the late 1980s. All three layers were coated in a continuous manner in the German process,
whereas in the U.S. process, the fuel particles were unloaded after each coating layer to perform quality
measurements. Additional coating variants are planned that will confirm understanding of the historical
coating fabrication database and enhance the prospects for one or more successful outcomes, and the
baseline and selected variants will then be irradiated in the first irradiation test, AGR-1. Recommended
coating rates and temperatures for the coating variant candidates planned for the AGR-1 fuel fabrication
campaign are listed in Table 2-1 (these conditions may be adjusted based on understandings gained from
early fuel production and characterization).

Table 2-1. Candidate coating variants for AGR-1.

Variant IPyC Conditions SiC Conditions Comment
1 1300 °C; 4.5 pm/min 1510 °C; 0.2-0.25; um/min  German baseline
2 1300 °C; 4.5 um/min 1580 °C; 0.2-0.25 um/min Higher SiC deposition temperature
3 1300 °C; 3.0 um/min 1510 °C; 0.2-0.25 um/min Low IPyC coating rate (anisotropic)
4 1300 °C; 3.0 pm/min 1580 °C; 0.2-0.25 um/min Low IPyC coating rate (anisotropic)
5 1300 °C; 6 pm/min 1510 °C; 0.2-0.25 um/min High IPyC coating rate
6 1300 °C; 6 um/min 1580 °C; 0.2-0.25 um/min Higher SiC deposition temperature
7 1300 °C; 4.5 um/min 1510 °C; 0.2-0.25 um/min Interrupted variant of Case 1
8 1300 °C; 4.5 pm/min ~ 1300 °C with Argon

Coating conditions are planned that span the range from producing highly anisotropic/high density
PyC to highly isotropic/low density PyC. Two different SiC coating temperatures are planned to
determine an acceptable window for producing the desired fine-grained SiC. An interrupted run is also
planned to more quantitatively characterize fuel produced in both interrupted and uninterrupted modes.
In addition, a variant in which argon gas is used during SiC coating is planned, since the UK Dragon
project and current microelectronics production has demonstrated that good SiC can be produced at much
lower temperatures when this gas is used.
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The second phase of coating development involves scaleup of the continuous coating process to
production size (e.g., 6-inch) coaters. The goal is to produce high quality coatings for performance
demonstration and, ultimately, qualification.

The laboratory scale coating development work includes the development of a comprehensive
coating process model to support small coater process development and the transition from laboratory
scale coaters to production scale coaters. A major challenge is to account for the effects of the turbulent
gas-solids interactions in the fluidized bed reactor on the rate controlling processes and the final product
quality of the chemical vapor deposition. The modeling team will make use of the latest computational
fluid dynamics computer codes and correlations available for simulating the hydrodynamics, heat and
mass transfer, and chemical reaction kinetics on the particle surfaces. In addition, experimental validation
will be needed at each stage of development to ensure that the model predictions are consistent with the
actual physics and chemistry. The latter is critical to the implementation of successful scale-up from the
laboratory to production prototype.

Because of the complexity of the various interacting physical phenomena, coating process model
development will follow a series of stages in which the major elements of the CVD process are addressed
one at a time. The basic order of the model component development is expected to be as follows:

1. Hydrodynamics

2. Heat and mass transfer

3. Reaction/deposition kinetics
4. Particle evolution.

Coated particles will then be over-coated and molded into cylindrical compacts using a matrix of
graphite flour and carbonized resin. The thermosetting resin based matrix and warm pressing compacting
process selected for the program is similar to processes used in Germany and Japan, and a substantial
departure from the thermoplastic matrix injection process used previously in the US. Development work
is required to adapt the process to the U.S. fuel compact specifications. Although the matrix is similar to
the German matrix, the ratio of matrix to particles is quite different, approximately 72:28 versus 90:10 for
the Germans. Also, the German pebbles were isostatically pressed into spheres while the AGR compacts
will be compression molded (via the warm pressing step) into cylindrical compacts. Being that the fuel
particles are non-compressible, this reduction in amount of matrix and change in molding technique
requires a consistent particle overcoat thickness and careful pressing of the particles into compacts. A
primary objective of the compacting development is to limit particle damage within the very low levels
required by the fuel product specifications, with allowance
for a low level of defects in the coated particles used to

form the compacts. ez
Parameters needed to establish a uniform overcoat . e
have been optimized using surrogates, and compacts have e
been warm pressed and carbonized (see Figure 2-8). Future o P
plans include optimizing the final heat treatment and
compacting uranium bearing coated particles.

In parallel with the fuel fabrication, additional effort is
being expended in the area of fuel characterization, with the 2t 8:06Am
goal of providing feedback to fabrication process
development, demonstrating compliance with product

specifications, and establishing more advanced and more
robust techniques to measure key attributes of the fuel that

Figure 2-8. Compacts produced
using ORNL thermosetting resin
process.
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can be integrated into a continuous production-scale coating process. Initial activities focus on
reestablishing conventional characterization procedures and developing improved anisotropy and optical
image measurement and analysis techniques. Advanced tomography techniques to measure layer
thickness and densities are also planned and ORNL is acquiring a high-resolution (1-2 pum) x-ray
inspection system to support this effort. Figure 2-9 shows results from the computer automated optical

characterization equipment developed at ORNL.
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Figure 2-9. Example information from the ORNL computer automated optical characterization
system. An IPyC histogram is shown on the right.

Computer controlled sample positioning and digital imaging plus ORNL-developed image analysis
software is used to quickly and easily analyze 1000’s of particles for size and shape with a 2-um

resolution. The system is also capable of quickly and easily analyzing
100’s of particle cross-sections with 1 um resolution and providing
copious data from which particle dimensions, layer thickness and
particle shape can be obtained. ORNL has also developed an
advanced optical method to measure pyrocarbon anisotropy. The
degree and direction of pyrocarbon crystallite orientation is measured
by a scanning ellipsometry technique called the 2-MGEM (2-
modulator generalized ellipsometry microscope). Figure 2-10 shows
typical results from that equipment. Recent data indicates a 2 pm
spot size has been achieved providing new information on the
variation in pyrocarbon properties within a layer for both archived US
and German fuel as well as material produced by the Program.

2.2.2 Fuels and Materials Irradiation

The fuel and materials irradiation activities will produce data on
fuel performance under irradiation as necessary to support fuel
process development, to qualify fuel for normal operating conditions,
and to support development and validation of fuel performance and
fission product transport models and codes. The irradiations will also
produce irradiated fuel and materials as necessary for post-irradiation
examination and ex-core high-temperature furnace safety testing.

A total of eight irradiation capsules will be used to obtain the
necessary data and sample materials. Details on each irradiation are
listed in Table 2-2. The purpose of AGR-1 is to shakedown the new
multi-cell capsule design, fabrication, and operation to reduce the
chances of capsule failures in subsequent irradiation tests. If
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successfully taken to a substantial fraction of design burnup and fast fluence, the test will yield key
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irradiation performance data from a number of early Table 2-2. Planned AGR irradiation capsules.

fuel variants produced under different processing Capsule Task

conditions from laboratory-scale coating equipment,
as discussed in Section 2.2.1 above. AGR-2 will be a AGR-1 Shakedown and carly fuel

performance demonstration irradiation with fuel AGR-2  Performance test fuel
fabi‘licz}te;i .fror'n a producti.on—scale cg:;te&. F.eedl;ac}lf AGR-3  Fission product transport - 1
to the fabrication process 1s expected following bot ) . )
AGR-1 and AGR-2. AGR-3 is devoted to obtaining AGR-4  Fission p r‘oduc‘t transport - 2

data on fission gases and fission metals under normal AGR-5  Fuel qualification - 1

irradiation conditions. AGR-4 will study fission AGR-6  Fuel qualification - 2

product behavior in fuel compact matrix and graphite AGR-7  Fuel performance model validation

AGR-8  Fission product transport —3

LN
R
—

materials.

i

Given the statistical nature of coated particle
fuel, a large number of fuel specimens are needed
to fully qualify® the fuel and demonstrate
compliance with the fuel failure specification.
AGR-5 and AGR-6 are identical irradiations that
will be used to qualify the fuel for the NGNP.
AGR-7 and AGR-8 are irradiations designed to
provide data with which to verify and validate
fuel performance and fission product transport
models.

A schematic of the test train to be used for
AGR-1 is shown in Figure 2-11. Each capsule
will be a highly instrumented multi-cell capsule
capable of irradiating six different fuel forms with
different thermal conditions, if required. Flux
wires will be used to measure the thermal and fast
neutron fluences. Thermocouples in graphite
bodies surrounding the fuel will be used to
monitor temperatures during the irradiation. The
graphite bodies may contain boron carbide to
control power generation during the irradiation
and prevent large power swings historically
experienced when irradiating fuel to high burnup.
A low flow of inert sweep gas is used during
irradiation to provide the correct thermal
‘_@’ F conductance to allow the fuel to be irradiated at
romcat cone cross secriow the pr(;pher teniperaturle. UsuaEl}lf, most of tﬁe
) _ _ sweep/thermal control gas is helium. Sma
Figure 2-11. Schematic of AGR-1 multicell amoulzlts of neon are us%d to change the overall

capsule. conductance to compensate for depletion of

Wi e ——-
g

i
-

G e RN ST - i

* We are not doing 10CFR50 qualification. Page 5 of the AGR technical plan states: “Fuel qualification is herein defined as the
demonstration of the robust performance and efficacy of the reference coated-particle fuel form through presentation of
experimental data and analysis results. This fuel qualification effort is meant to support the NRC-RES in its preapplication
review efforts for the VHTR concept and to support the NRC in its eventual issuance of the Gen-IV VHTR license.”
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uranium due to burnup and still keep the fuel at the required temperature.

Planned AGR-1 irradiation conditions are a peak burnup of 18 to 20% FIMA, a volume average time
average temperature of 1150 °C, a time average peak temperature of 1250 °C, and a fast neutron fluence
of 5 x 10% n/m” (E>0.18 MeV). The capsules will be irradiated in one of the large B positions at the
Advanced Test Reactor at the Idaho National Engineering and Environmental Laboratory. The large B
position has a neutron spectrum very similar to that expected in a gas reactor. Preliminary calculations
suggest that each capsule will be irradiated for 2.5 years to meet the requirements stated above, which
will simulate a three to four year irradiation in the NGNP.

An important objective of the irradiation is to measure the fission gas release from the fuel and
correlate it to the operating parameters in the irradiation. The sweep gas from each cell containing fuel
specimens will be “sniffed” for fission gas. The sweep gas also transports any fission gases released from
the fuel to a location outside of the reactor,
where an ion chamber with enough Lead shield
sensitivity to indicate a single fuel particle
failure (evident by a spike in its signal) will
measure gross radiation in the line. The
isotopic content of the gas in the line will
be monitored on line using the state-of-the-
art fission product monitoring system
shown in Figure 2-12. This system
consists of a gamma spectrometer for
continuous measurement of the
concentration of the various fission gas
isotopes in the sweep gas. With this
instrumentation, particle failures can be
monitored and correlated to conditions in
the cell. The isotope concentration data

Sample lines

1 AoV

will be used to calculate the R/B ratio for Liquid N, D HPe tector

various fission products, a key measure of assembly

fission product retention and fuel Figure 2-12. INL fission product monitoring system.
performance.

2.2.3 Post-irradiation Examination and Safety Testing

Data from the post-irradiation examination and safety testing will supplement the in-reactor
measurements (primarily fission gas release-to-birth ratio measurements) as necessary to demonstrate
compliance with the fuel performance requirements and support development and validation of the
computational fuel performance models. This work will also support the fuel manufacture with feedback
on the performance of kernels, coatings, and compacts.

2.2.3.1 Post-irradiation Examination

Post-irradiation examination is a collection of nondestructive and destructive techniques that can be
used to characterize the state of the fuel either after irradiation or after safety testing. The different types
of analyses or measurements that will likely be performed, the purpose of the measurements, and their
value to the overall fuel qualification plan are discussed in the next few paragraphs.

Following removal of the irradiation test train from the reactor to the hot cell, a gamma scan of the
entire test train will be performed. A collimated gamma spectrometer in the hot cell will traverse the
capsule and record the gamma activity as a function of axial length. Such a measurement is generally
qualitative and will provide information to determine whether any fuel compacts have broken or if a
significant number of fission products have been released and moved within the capsule.
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Following capsule disassembly and removal of the fuel element, the general condition of the fuel
will be noted, specimens will be weighed, and dimensional measurements of the specimens will be
performed to characterize the shrinkage or swelling that occurred during irradiation.

To examine the physical characteristics of irradiated fuel particle coatings, optical metallography
will be performed on cross sections of the fuel pebble or fuel compact. These high magnification
examinations offer excellent visual evidence of the condition of the fuel following testing. This technique
will be used to investigate layer integrity, possible layer debonding, densification of layers (e.g., buffer)
the degree of void formation due to fission gas, the extent of kernel migration and swelling, and the nature
and extent of the fission product attack on the SiC. Use of bright field and polarized light and etching are
useful techniques to reveal the microstructure of the SiC layer. With proper etching techniques, SiC grain
orientation and sizes can be determined. Figure 2-13 is a photograph of optical metallography performed
on German fuel following irradiation in the AVR.
Development of a nondestructive tomographic x-ray inspection
technique is also under consideration.

Gamma-scanning of capsule components (e.g., graphite
bodies) or leaching and gamma counting of capsule components
will be used to determine the identity, migration, and
distribution of fission products following irradiation.

To identify where the fission products are located within

Y

irradiated fuel particles, the fuel element will be deconsolidated P e i
to obtain individual particles for examination by electron Figure 2-13. Photomicrograph of
microscopy to reduce the radiation background. The radiation German AVR fuel after
background is the issue here, not damage to particles or the irradiation.

release of fission products. The reduced background radiation

from a single fuel particle is usually required for good measurements by electron microprobe, where one
is looking for x-rays characteristic of specific fission products (measured by energy dispersive or wave
length diffraction techniques). This technique looks for evidence of fission product accumulation at the
IPyC/SiC interface, fission product attack of the SiC, and fission products outside the fuel particles.

For irradiations of fuel compacts or pebbles, there will be a need to measure fuel particle failure
fraction independently of the on-line R/B measurements, due to the uncertainty in the R/B measurement
for a few particle failures and the inability to measure metallic releases. The most useful technique for
fuel particle failure measurements, when the on-line R/B measurements suggest a failure fraction well
under 1%, is leach-burn-leach. In this technique, the fuel compact or pebble is leached with acid to
remove any fission metals (e.g., cesium) released from defective fuel particles and heavy metal
contamination. (Note that on-line measurements during irradiation will only estimate fission gases.) The
fuel element is then burned in air to remove all carbon matrix material, the OPyC layers, and also the
[PyC/Buffer layers of any particles with failed SiC. Particles that remain are then leached with an acid
solution to remove any exposed uranium that had been enclosed by an intact pyrocarbon layer. The
measurement of the free uranium is then converted to a SiC defect fraction.

Another technique performed on coated particle fuel is the irradiated microsphere gamma analyzer
(IMGA) developed at ORNL. With this technique, fuel particles following deconsolidation are analyzed
individually by a gamma spectrometer and catalogued based on the ratio of mobile and immobile fission
products measured in the particle. A histogram of such ratios is developed based on all the particles in a
sphere or compact and compared to a normal distribution. Variations from normal can easily be seen
with such a technique. Metallography following IMGA on the particles that depart from normal can be
valuable to tie the microstructure of the anomalous particles to the fission product release. For high-
quality fuel with low gas release, this technique may not be required, but for intermediate failure fractions
of 10-4 to 10-2, deconsolidation followed by IMGA is useful.
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Traditional burnup analysis is also performed as part of the series of post-irradiation examinations.
Following deconsolidation, a few particles can be sent for destructive radiochemical assay to determine
the concentration of transuranics and minor actinides, from which burnup can be assessed.

2.2.3.2 Safety Testing

An important goal of this program is to determine the performance of the fuel under high-
temperature accident conditions, since integrity of the coated particle to high temperature is a crucial part
of the safety case for the NGNP. In particular, three environments are of interest: helium, air, and steam.
The irradiated TRISO fuel will be exposed to these environments for up to 500 hours. The exact
composition of these environments are not known at present, but assumptions are that the test will be run
at atmospheric pressure, and steam and air concentrations will be in the range of 10,000 ppm. Some of
the early German data of this type is plotted in Figure 2-14, which shows krypton fractional releases as a
function of heating time at 1600 °C and burnup. Note that
the lower burnup fuel (8-10% FIMA) had little release, but
the higher burnup fuel, typical of the burnup expected in 107 compact | — T o)
NGNP, had much higher releases. Although these data are Fuel element ——
not directly applicable to the NGNP because of differences r
in fabrication and particle size, it is illustrative of the need 0 ‘

to test fuel at a variety of burnup levels. /&(/((&ﬁ
( N\

The maximum temperature, including a 100 °C g 10" >
uncertainty, predicted for a core conduction cooldown 3 12 Q{‘\\
accident in small modular gas cooled reactors is 1600 °C z \\\\ /r)))))
and 1s reached within ~50 to 100 hours after initiation of the § 10°% L \\ AT
event. Temperatures remain at ~1600 °C for about 25 to 50 5 \ \\
hr, followed by a long, slow (hundreds of hours) cooldown. e \ \
Traditionally, post-irradiation isothermal annealing at 10* M e
temperatures of 1600, 1700, and 1800 °C have been f%—/__ |8-10% FMal” /2 /]
performed for several hundred hours, with continuous , WW
collection of released fission products. °

Isothermal tests are generally considered to be
conservative relative to heatup transient tests, which follow 107 ! . -~ o

more closely the time-temperature profiles calculated to Heating time () at 1600°C
occur in a core conduction cooldown transient, because
more time is spent at the highest temperatures. Thermal
gradients are not expected to be significant. Isothermal
tests are also easier to analyze than transient tests and,
given the long thermal time constant associated with the
transients, there is little new information to be gained by
conducting transient tests. The experimental facility will
consist of a furnace to maintain a fuel specimen at specified temperatures with a cold finger to trap the
condensable fission products and a cold trap for trapping fission gases. The cold finger and cold traps are
analyzed using traditional gamma spectroscopy. The data needed from safety testing are fission product
release, TRISO coating layer integrity, and fission product distribution within fuel particles (corrosion
likelihood) and fuel compacts.

Figure 2-14. Krypton 85 fraction
release data versus heating time at
1600 °C and fuel burnup from German
heating tests.

The release behavior of the fission products is somewhat different than in other nuclear fuels. Silver
(Ag-110m) is released first because of its greater mobility through the SiC coating on TRISO particle
fuel. This is followed by Cs (134Cs and 137Cs), which can diffuse through the PyC and SiC layers after
long times at these temperatures. Lastly, the fission gases (85Kr) are released.
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Postheating test activities include characterization of the TRISO coating layer integrity by optical
metallography including looking for evidence of SiC layer thinning and decomposition, chemical attack
of the SiC, and the mechanical condition and microstructures of the SiC and PyC layers. Other
procedures discussed earlier for irradiated fuel may also be applied. Detailed test matrices will be
developed as the program evolves. Nondestructive x-ray tomography (if developed) will also be
applicable.

2.24 Fuel Performance Modeling

The high temperature gas reactor TRISO coated fuel performance computer codes and models will
be further developed and validated as necessary to support the fuel fabrication process development and
the NGNP design and licensing activities. The fuel performance modeling will address the structural,
thermal, and chemical processes that can lead to coated-particle failures. The models will address the
release of fission products from the fuel particle and the effects of fission product chemical interactions
with the coatings, which can lead to degradation of the coated-particle properties.

Compared to light water reactor and liquid metal reactor fuel forms, the behavior of coated-particle
fuel is inherently more multidimensional. Moreover, modeling of fuel behavior is made more difficult
because of statistical variations in fuel physical dimensions and component properties, from particle to
particle and around the circumference of any given particle due to the nature of the chemical vapor
deposition fabrication process. Previous attempts to model this fuel form have attacked different aspects
of the problem. Simple one-dimensional models exist to describe the structural response of the fuel
particle. Models or correlations exist to describe the fission product behavior in the fuel, though the
database may not be complete owing to the changes in fuel design that have occurred over the last 25
years. Significant effort has gone into modeling the statistical nature of fuel particles. However, under
pressure to perform over one million simulations with the computing power available in the 1970s and
1980s, the structural response of the particle was simplified to improve speed of calculation.

New models are currently being developed in the United States that represent a first-principles-based
mechanistic, integrated, thermal-mechanical-physio-chemical-irradiation performance model for particle
fuel, which has the proper dimensionality yet captures the statistical nature and loading of the fuel. The
mechanistic model for coated-particle fuel considers both structural and physio-chemical behavior of a
particle-coated fuel system during irradiation. The INL model, called PARFUME, includes the following
important phenomena:

e Anisotropic response of the pyrolytic carbon layers to irradiation (shrinkage, swelling, and creep
that are functions of temperature, fluence, and orientation/direction in the carbon).

o Failure of a SiC ceramic in the coating system (using the classic Weibull formulation for a brittle
material), either by traditional pressure vessel failure or by mechanisms such as particle
asphericity (see Figure 2-15), or pyrocarbon layer cracking (see Figure 2-16), or debonding and
subsequent stress concentrations in the SiC layer.

e Chemical changes of the fuel kernel during irradiation (changes in carbon/oxygen, carbon/metal
and/or oxygen/metal ratios, depending on the kernel fuel type, and production of CO/CO, gas)
and its influence on fission product and/or kernel attack on the particle coatings.

e Thermo-mechanical response of the kernel and buffer as a result of buffer densification, kernel
swelling, and gas generation (fission gases and CO), including development of gaps between the
buffer and the TRISO-coating layers as a function of burnup, fast fluence, and temperature.

o Attack of the SiC layer by Pd and other fission products, and by kernel migration.

Transport of key fission products (Kr, Ag, Sr, Cs) from the kernel and through each layer of the
particle.
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e Statistical variations of key properties of the particle associated with the production process,
requiring Monte Carlo analysis of a very large number of particles to understand the aggregate
behavior. Fabricated particles will exhibit statistical distributions for not only the physical
dimensions of the individual coatings but also for the mechanical properties of these layers.

Particle asphericity is important at high
pressure
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Figure 2-15. Effect of particle asphericity on Figure 2-16. Cracked inner pyrolytic carbon layers
failure probability. could lead to SiC layer failure.

These models have had some success in predicting fuel failure mechanisms and rates in the U.S. fuel
tested over the last decade, thereby facilitating a better understanding of TRISO coated fuel behavior.
Such a tool can be very useful for both pretest and posttest predictions for any experiment performed in
this program. In addition, sensitivity studies with the model can be used to identify critical materials
properties data and constitutive relations whose uncertainty needs to be reduced because they drive the
predicted performance of the coated fuel particle. Furthermore, use of piggyback cells (small
encapsulated fuel samples outside the compacts) in the irradiation capsules can be used to study those key
individual phenomena in coated particles that have high uncertainty (e.g., shrinkage and swelling of
pyrocarbon, fission product release behavior in a purposely defective or initially failed particle).
Moreover, some of the post-irradiation examination techniques can provide maps of fission products
through the particle, which can be compared with model predictions of fission product transport through
the coatings. All of this type of data will eventually be needed to validate the overall TRISO coated fuel
performance model. Such fuel performance models will eventually be needed to provide some
understanding of fuel behavior inside the operations and safety envelope defined by the irradiation and
safety testing (i.e., interpolation) and outside these envelopes where the margins of failure of the fuel may
be approached (i.e., extrapolation). Finally, a validated fuel performance model can be used to help
evaluate and guide potential future changes in the next-generation coated particle fuel.
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The importance of fuel performance modeling has been recognized internationally. The United
States is part of the [AEA Coordinated Research Project on coated particle fuel technology. A key task is
associated with benchmarking coated particle fuel performance models under both normal and off-normal
conditions. The fuel behavior models under development by the AGR program are part of the
international benchmark.

2.2.5 Fission Product Transport and Source Term Modeling

Transport of fission products produced within the coated particles will be modeled to obtain a
technical basis for source terms for advanced gas reactors under normal and accident conditions. The
design methods (computer models) will be validated by experimental data as necessary to support plant
design and licensing.

The NRC will require validated computer models that accurately predict the following phenomena:
»  Fission product release from the kernel
*  Transport through failed coatings
*  Deposition fraction of the released fission products in the compact or sphere matrix

»  Deposition fraction of what gets through the compact on fuel element graphite (prismatic variant
only)

*  Deposition fraction of what gets out of the fuel element onto graphite dust and metallic surfaces in
the primary circuit

*  Re-entrainment of deposited fission products during an elevated temperature accident, or
depressurization event

«  Transport of fission products on dust particles, and subsequent release to the environment if the
primary circuit is breached.

Each of the phenomena listed above is complex and difficult to model. It is also difficult to design
and conduct experiments that can cover the multitude of variables that affect the physical situation. The
AGR program has developed a research and development plan that, when the work is successfully
completed, will produce a technical basis for source terms under normal and accident conditions for
advanced gas-cooled reactors. The program consists of irradiations to provide data on fission gas and
fission metal release from the kernel and transport through failed coatings (AGR-3), fission product
transport behavior in the fuel element matrix and graphite block (AGR-4), out of pile experiments to
characterize plateout, and reentrainment of fission products during accident conditions. The program also
contains an irradiation (AGR-8) that will be used to validate computer models that describe the in-vessel
gas reactor source term.
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Auctivity Name Start D ate Finish Date 2004 2005 2006 2007
LEU UCO Kernels 12/7/04  4/21/05 §—
Coating Setup 7/9/04 4/13/05 S —
Coating - Baseline 4/14/05 6/20/05
Coating - Variants 6/21/05 10/5/05
Kernel Characterization 4/22/05 5/27/05 N
Coating Characterization 6/10/05 2/3/06 B —
Compact Development = 10/1/04  7/25/05 E_i_j
Compacts for AGR-1 7/26/05 @ 2/21/06
Compacts 9/23/05 5/3/06 V——
Characterization
Ship to INEEL 5/18/06 5/31/06
Long Lead 10/1/04  3/31/05 S —
Procurements
AGR-1 Pretest 12/1/04 5/31/05 L7
Prediction
AGR-1 Final Design 10/1/04 3/2/05 L7
FPM and Control 3/4/05 8/22/06 57
System Assembly, Test
and Calibration
AGR-1 Experiment 10/3/05 4/6/06
Fabrication
Complete Test Train 6/1/06 8/31/06
Assembly
Ready for Insertion 9/1/06 9/1/06

2004 2005 2006

2007

Figure 2-18. Schedule of activities leading to AGR-1 irradiation.

2.4 Summary and Conclusions

The NGNP AGR Fuel Development and Qualification Program consists of five elements:

*  Fuel manufacture,

*  Fuel and materials irradiations,

»  Safety testing and post-irradiation examinations,

*  Fuel performance modeling, and

»  Fission product transport and source term modeling.

The goal is to qualify the fuel form for use in the NGNP to the following:

*  Burnup of 15-20% FIMA,

® Specific fuel service conditions subject to change as the NGNP core design advances.
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*  Volume average time average temperature of 1150 °C,
*  Time average peak temperature of 1250 °C, and
«  Fast neutron fluence of 5 x 10% n/m? (E>0.18 mev),

*  High fission product retentiveness for hundreds of hours at 1600 °C.

The fuel form is based on reference UCO, SiC TRISO particles bonded by a matrix of graphite flour
and carbonized thermosetting resin, incorporating past German fabrication experience.

An underlying theme for the fuel development work is the need to develop a more complete
fundamental understanding of the relationship between the fuel fabrication process, key fuel properties,
the irradiation performance of the fuel, and the release and transport of fission products in the NGNP
primary coolant system during both normal operation and any conceivable accident. The logic of the
program is structured such that there are multiple feedback loops and opportunities for improvement in
the fabrication process based on early results. The fuel performance modeling and analysis of the fission
product behavior in the primary circuit are important aspects of this work. The performance models are
considered essential for several reasons, including guidance for the plant designer in establishing the core
design and operating limits, and demonstration to the licensing authority that the applicant has a thorough
understanding of the in-service behavior of the fuel system. The fission product behavior task will also
provide primary source term data needed for licensing.
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3. MATERIALS RESEARCH AND DEVELOPMENT

3.1 Introduction

The NGNP Materials R&D Program will focus on testing and qualification of the key materials
commonly used in VHTRs. The program will address the materials needs for the NGNP reactor, power
conversion unit, intermediate heat exchanger, and associated balance of plant. Materials for hydrogen
production will be addressed by the DOE’s Nuclear Hydrogen Initiative [DOE 2004]. Revision 1 of the
NGNP Materials R&D Program Plan [Hayner et al. 2004] was issued in September 2004. The R&D
discussed in this document is based on that plan.

The current organizational structure for management of the Materials R&D program is shown in
Figure 3-1. The NGNP Program is the primary interface with DOE-NE and the industry partner
(following selection). The NGNP Materials R&D Program Manager interfaces with the Generation IV
Materials National Technical Director and the NGNP Program System Integration Manager to establish
program elements. Input, interface, and recommendations are also obtained from the INL Materials
Review Committee (MRC), the Materials Quality Assurance Program (QAP), and the Generation IV
VHTR Materials and Components Project Management Board (PMB). Work Packages and detailed
program elements are based on DOE guidance and available funding.

’NGNP Program H Industry Partner

: Gen IV
’ NGNP Materids R&D Program }4—» Materials R&D
Crosscutting
Materials Review
Committee Materials QA
ﬁ%‘ﬁ‘;i‘@ Fabs Program
Universities
Consultants Other Gen IV
Gen [V Materials Reactor Concepts
Components ]
Program Plan
!
Detailed Work
Planning

Figure 3-1. NGNP Materials Organization Structure.

The NGNP MRC is a senior independent review body for the materials R&D program. Russell
Jones from Pacific Northwest National Laboratory (PNNL) chairs the committee. The MRC provides
objective technical review of key selected materials program activities, including test materials selection
decisions, test program content, test results, etc.

The Generation IV Reactors Materials Program within the Generation IV Initiative has responsibility
for establishing and executing an integrated plan that addresses crosscutting and reactor-specific research
needs in a coordinated and prioritized manner. The Generation IV Reactors Materials Cross-cutting and
the NGNP Materials R&D Program are both part of the integrated Generation IV Materials Program. The
NGNP Program is currently the highest priority reactor concept within the Generation IV Program.
Consequently, the Generation IV Materials National Technical Director and the NGNP Materials R&D
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Program Manager work closely to correctly define materials R&D program area priorities and detailed
work scope to be performed.

The National Technical Director of the Generation IV Reactor Materials Cross-cutting Program will
ensure that crosscutting materials R&D activities:

*  Support the NGNP Materials R&D Program activities with a minimum of duplication and overlap

*  Support the NGNP product team efforts to ensure integration of product requirements into the R&D
activities.

There is no actual design for the NGNP; however, Table 3-1 compares nominal parameters of VHTR
designs currently being developed with the Advanced Boiling Water Reactor (ABWR) design. Note that
the actual design selected for the NGNP could be different from the information presented. Therefore, the
information in Table 3-1 should be viewed as illustrative, not specific of the NGNP.

Table 3-1. Comparison of nominal parameters for prismatic and pebble bed design and ABWR.

GA- NGNP NGNP

Reactor Pressure Vessel Parameter ABWR GT-MHR Prismatic " Prismatic* PBMR ¢ PBR *
Nominal gas outlet temperature (°C) 850 950 1000 900 1000
Nominal gas inlet temperature (°C) 491 590 490 482 490 ¢
Normal operating temperature (°C) 284 495 350 470 ¢ 300 465
Worst case accident temperature (°C) 565 530 560 ° 506 560
Inlet gas pressure (MPa) 7.07 7.07 7.07 8.9 7
Outlet gas pressure (MPa) 7.02 7.02 7.02 8.6 6.5?
External diameter (meters) 7.2 8.2 8.2 8.2 7.02 7.06
Nominal wall thickness (mm) 175 100-300 100-300 100-300 120-220 120-220
Nominal height (meters) 21 23.7 23.7 24 22 19
Maximum radiation fast fluence over 60 3x10'%¢ 1x10"*" 4.5x10"* 3.0x10"

years (n/cmz)

a. MacDonald et al. 2003. b. Richards et al. 2004. c. DOE 2003. d. 490 °C, based on recent analysis still pending publication.
e. If the temperature is 490 °C on the inside, then a temperature drop is assumed to reach about 470 °C. f. 490 °C, based on
recent analysis still pending publication. g. GEN IV 2003. h. Core barrel, Neutron Energy Group 2 (5.105 10° x 3600 x
24 x 365 x 60 =10").

All work performed to support the technical program for the NGNP Materials R&D Program will
utilize the national consensus standard ASME NQA 1997, "QA Program Requirements for Nuclear
Facilities Applications," and Subpart 4.2 of ASME NQA 2000, “Guidance on Graded Application of
Quality Assurance (QA) for Nuclear-Related Research and Development,” for project-specific materials
development activities.

The QA requirements for specific projects under the NGNP Materials R&D Program will be
specified in project-specific Quality Plans and project-specific Technical Specifications. The project-
specific quality plans will include the necessary management controls commensurate with the project
work scope and importance to the program. There are currently two project-specific Quality Plans, one at
Oak Ridge National Laboratory (ORNL), the other at Idaho National Laboratory; both are DOE national
laboratories. At ORNL, the quality plan is titled Quality Assurance Plan for the Next Generation Nuclear
Plant Materials Program at Oak Ridge National Laboratory, QAP-ORNL-NGNP-01, Rev. 1. The INL
Quality Plan is titled Quality Program Plan for the INL NGNP Materials R&D Program, PLN-1792. The
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DOE Nuclear Energy Research Initiative university work activities may be managed under the umbrella
of either the ORNL or INL Quality Plan.

3.2 ASME Codification

Once appropriate materials have been designated for NGNP use, it will, of course, be necessary to
gain ASME boiler and pressure vessel (B&PV) Code acceptance of those materials at the desired
operating conditions.

Section II of the ASME B&PV Code is developed and maintained by the subcommittee on materials;
it addresses materials approved for use by the construction subcommittees. Besides various specifications
for ferrous, nonferrous, and welding materials, Section II also contains material properties such as
Young’s modulus, thermal conductivity, allowable stresses and stress intensities, etc. To achieve B&PV
Code acceptance, specific material information must be submitted to the appropriate subcommittees.
Satisfying the requirements of Appendix 5 of Part D, Section II, of the ASME B&PV Code may require
significant effort. The NGNP’s higher temperatures and operating environment may require even further
efforts. Once the material is accepted in Section 11, it must also be submitted for construction approval in
Section III, Subsection NH, as discussed in the next few paragraphs.

The design rules of subsection NH for Class 1 elevated-temperature components consist of:

1. Load-controlled (primary) stress limits (Section III, Div I-NH Appendix I)
2. Strain, deformation, and fatigue limits (Section III, Div I-NH Appendix T).

The load-controlled stress limits are in the form of time-dependent allowable stresses based on both
short-time tensile test results and long-term creep test results. Allowable stress reduction factors for
weldments are given, as are reduction factors to account for the degrading effects of prior service. Only
elastic analysis results are required to satisfy the primary stress limits.

The second category of design rules—strain, deformation, and fatigue limits—are much more
problematic. These rules deal with complex behavior resulting from primary plus cyclic secondary and
peak stresses. They aim at preventing failures due to excessive deformation, creep-fatigue damage, and
inelastic buckling, and they generally require inelastic design analysis results to satisfy them. The rules
include strain accumulation limits, creep-fatigue criteria,c buckling limits, and special limits for welds.
The materials currently covered, allowable life times, and maximum allowable temperatures are limited in
Subsection NH, as shown in Table 3-2. Only the temperature limits for Alloy 800H come close to those
required for the NGNP vessels. Coverage is inadequate for any of the materials in the very-high-
temperature NGNP components.

Aside from the fact that many preliminary candidate NGNP materials are not included in Subsection
NH, there are several generic shortcomings that will require resolution. First, the maximum temperatures
permitted will have to be significantly increased. Second, allowable time-dependent stresses will have to
be extended beyond the current 300,000 h maximum to 600,000 h. Third, environmental effects (impure
helium) need to be incorporated into the failure criteria, particularly creep-fatigue. Fourth, creep-fatigue
damage accumulation rules need to be revised to more accurately predict actual material failure
conditions.

As currently formulated in Subsection NH, the creep-fatigue rules are based on a linear damage accumulation rule, an
interaction diagram to account for the synergistic effects (and for environmental effects in the case of ferritic steels), and
multiaxial strength theories for both fatigue and creep rupture.

30



Table 3-2. Current Subsection NH materials and maximum allowable times and temperatures.*
Temperature (°C)°

Primary Stress Limits Fatigue

Material and Ratcheting Rules Curves
304 stainless steel 816 704
316 stainless steel 816 704
2 1/4 Cr — 1 Mo steel 593" 593
Alloy 800 H 760 760
Modified 9 Cr — 1Mo steel (Grade 91)° 593° 538

a. Allowable stresses extend to 300,000 h (34 years) unless otherwise noted.
b. Temperatures up to 649 °C are allowed for not more than 1000 h.
c. Draft form only, waiting for approval.

Time-dependent structural tests will provide data that either validates the high-temperature design
methodology (HTDM) or leads to changes in inelastic design analysis guidelines or Code rules. The role
of structural tests will be even more important for the NGNP materials because of the lack of long-term
service experience. Very-high-temperature, time-dependent tests of structural models (1) provide better
understanding of structural behavior and failure modes, (2) validate inelastic analysis methods, and (3)
provide some applications feedback to the Code.

It should be emphasized that the structural tests to be performed in this Materials Program are not
tests of NGNP component structures. Rather, they are tests of carefully chosen, simple, but representative,
geometrical and metallurgical features subjected to time-varying thermal and mechanical loadings. The
tests are contrived to explore key features or problem areas of the methodology. Past examples include
beams, plates, thick-walled cylinders subjected to thermal gradients, capped cylindrical shells, and nozzle
attachments. Cylinders and plates with notch-like discontinuities and with axial or circumferential welds
were included. The latter two types of tests will be particularly important to NGNP because of the two
major NRC concerns of weldments and discontinuities.

While not strictly a part of the design methodology, the safety assessments required for licensing
depend on much of the same materials and structures database. A particular need is for a flaw assessment
procedure capable of reliably predicting crack-induced failures and the size and growth of the resulting
opening in the pressure boundary. High-temperature flaw assessment guides have been developed in
France, Japan, and the United Kingdom, and work on elements of a procedure is currently underway in
the United States under Pressure Vessel Research Council sponsorship. An overall proven procedure does
not exist however, which will require inelastic analysis of flawed components, characterization of sub-
critical creep and fatigue crack growth, and a structural failure criterion. These will be developed for the
NGNP materials.

Four current ASME B&PV Code cases and a draft Code case are relevant to the HTDM project:

1. Case N-499 was developed for HTGRs. It permits Class 1 components fabricated in accordance
with ASME SA-533, Grade B /SA Grade 508 steels to exceed the normal 371 °C low-
temperature design limit for short periods for Levels B, C, and D events. A similar case might
be developed for the NGNP vessel material under off-normal conditions.

2. Case N-201 provides rules for construction of core support structures made of ferritic steels,
austenitic stainless steels, and high-nickel alloys, and having metal temperatures not exceeding
those in Section II, Part D. This Case, with modifications, might be useful for the metallic core
internals of NGNP. The basis for the Case is the same high-temperature structural design
methodology as that on which Subsection NH is based.
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3. Code Case N-253 provides rules for Class 2 and 3 components for elevated temperature service.
Unless exemption rules are met, the case essentially defaults to the criteria of Subsection NH.

4. Code Case N-290, which covers expansion joints in Class 1 liquid-metal piping, can serve as a
starting point for criteria and design methods for the NGNP bellows.

5. A draft Code case developed in the 1980s for design of Inconel 617 to 982 °C is directly
pertinent to NGNP [Corum and Blass 1991]. The original request for the case came from DOE
and General Electric. The specific gas-cooled reactor component of primary interest was a
steam-methane reformer, which was to be part of the reactor primary pressure boundary.
Materials of potential interest included Alloys 800H, X, and 617. Alloy 617 was chosen for the
case because it was a leading choice of designers, and a reasonable database of material
properties existed. The case was developed by an ad hoc group of the Subgroup on Elevated
Temperatures Design (SG-ETD). The case was subsequently approved by SG-ETD and
submitted to its parent group, the Subcommittee on Design, for approval. However, further
action on the case was suspended when the DOE project was canceled. The case is of value to
NGNP because it can serve as a springboard for establishing NGNP Code rules. It was the result
of a five-year effort of experienced high-temperature materials and structures engineers, as well
as gas-cooled reactor project participants. It also had the participation and input of researchers
from the Japanese Atomic Energy Research Institute (JAERI) and the Institute for Chemical
Technology (KFA) in Germany. The draft case, while having the same framework as
Subsection NH, has several unique features that are ramifications of the very-high-temperature
material behavior. This behavior includes (1) lack of clear distinction between time-independent
and time-dependent behavior, (2) high dependence of flow stress on strain rate, (3) softening
with time, temperature and strain. Therefore, the design rules of Subsection NH that are based
on the separation of time- and rate-independent response, or on strain-hardening idealizations of
material behavior require careful reconsideration in the case. For example, the case specifies
that inelastic design analyses for temperatures above 649 °C must be based on unified
constitutive equations, which do not distinguish between time-independent plasticity and time-
dependent creep.® The draft case also recognizes that significant environmental effects on Alloy
617 could exist, and it recognizes that extended exposure at elevated temperature may cause a
significant reduction in fracture toughness of Alloy 617, thus introducing an additional failure
mode—brittle fracture—to be considered. Finally, because of the uncertainties in data
extrapolation and the lack of experience in designing to such high temperatures, where allowable
stresses are very low, the draft case is limited to design lives of just 100,000 h or less.

3.3 Component Candidate Materials

A variety of options have been identified for potential use of materials in the NGNP reactor and
balance of plant components. These options originated through an initial look at the materials issues for a
very high-temperature reactor in January 2003 [Baccaglini et al. 2003] and a much larger, focused NGNP
materials options identification activity that included meetings at INL and ORNL in July 2003. The
information shown in this section is a summary of the options identified because of these activities and
any others that have been identified since the July meeting.

3.31 Reactor Core Graphite, Reflector, and Supports

Graphite will be the major structural component and nuclear moderator in the NGNP core. The
graphite used previously in the high-temperature gas reactor programs in the United States, H-451, is no
longer in production, and thus replacement graphites must be found. Hence, it will be necessary to
qualify new grades of graphite for use in the NGNP. Fortunately, likely potential candidates currently
exist, including fine-grained isotropic, molded or isostatically pressed, high-strength graphite suitable for

¢ This is also the case for the high-alloy ferritics (e.g., 9Cr — 1Mo steel) at the upper end of their useful temperature range.
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core support structures, fuel elements, and replaceable reactor components, and near isotropic, extruded,
nuclear graphite suitable for the above-mentioned structures and for the large permanent reflector
components. These candidates would meet the requirements of the draft ASTM materials specification
for the Nuclear Grade Graphite.

3.3.2 Reactor Internals

The reactor internals that need to be addressed will be design specific, but most likely include a core
barrel, inside shroud, core support floor, upper core restraint, and shutdown cooling system shell and
tubes.

For the very-high-temperature components (>760 °C), the most likely material candidates include
variants or restricted chemistry versions of Alloys 617, X, XR, 230, 602CA, and variants of Alloy S00H.
Alloys 617, X, and XR were developed for earlier, gas-cooled reactor projects. Alloy 617 has the
significant advantage in the United States of having gone through ASME Code deliberations that
culminated in the draft code case discussed above, and the body of experts that developed the case
simultaneously identified what must be done before the Code case could be approved. Alloys X and XR
have a significant database and body of experience in Japan. Alloy 602CA is a relatively new high-
temperature alloy that has been approved for Section VIII, Division I, construction to 1800 °F. Alloy 230
has good high-temperature and environmental resistance properties and is approved for Section VIII,
Division I, Construction to 1650 °F. Alloy 800H is in Subsection NH, and would be the leading candidate
for the intermediate temperature range of 600—760 °C. Interest exists to extend its application beyond 760
°C.

However, the upper limit of these materials is judged to be 1000 °C. Any component that could
experience excursions above 1000 °C would need greater very-high-temperature strength and corrosion
resistance capabilities. Cy/C or SiC¢/SiC composites would then be the leading choices for materials
available in the near future for service that might experience temperature excursions up to 1200 °C. For
similar high-temperature service at some later point in the future, oxide dispersion strengthened alloys
may be an alternative. Compatibility of the metals with the helium coolant and irradiation resistance of
the potential candidate materials needs to be addressed.

3.3.3 Primary Coolant Pressure Boundary System

Several possible primary coolant pressure boundary systems are envisioned for the NGNP. These
comprise a large reactor pressure vessel containing the core and internals, a second vessel containing an
intermediate heat exchanger and circulator (or a power conversion unit), and a pressure containing cross-
vessel joining the two vessels. Because of the wide range of material thickness in the primary coolant
pressure boundary system, it will be constructed in a segmented configuration. The three vessels will be
exposed to air on the outside and helium on the inside, with emissivity of the chosen material an
important factor regarding radiation of heat from the component to the surrounding air to ensure adequate
cooling were accident conditions to develop.

The primary coolant boundary system will either use conventional materials as listed within the
ASME SA 508/SA 533/SA182 specifications, or it will be fabricated from materials never used
previously for a nuclear reactor in the United States. If the temperature can be maintained to less than
375 °C by cooling or other means, conventional materials can be used. However, if the pressure boundary
is in the range of 375-500 °C, advanced materials will be required. The advanced materials tentatively
selected for further investigation for the gas-cooled primary coolant pressure boundary system service are
ferritic/martensitic steels, alloyed primarily with chromium and molybdenum. The two most promising
classes of commercially available steels are:

*  9Cr-1MoVNb (SA182). This class of materials has the most industrially mature high-strength
database. For example, the 9Cr-1Mo-V (Grade 91) alloy is ASME Code-approved to 649 °C for

33



Section III, Classes 2 and 3, components and is in the final stages of approval for inclusion in
Subsection NH for Class 1 applications. Within this class of alloys, it seems prudent to consider
variants such as 9Cr-1MoWYV (Grade 911, Grade 92, etc.), because available research data show
significantly improved high-temperature strength for those alloys relative to Grade 91.

*  2.25Cr-1Mo (SA508). There is an extensive database for this alloy, including data in different
operating environments, such as helium. Another advantage is the extensive industrial experience
with this alloy in many different applications around the world. However, its high-temperature
strength is significantly lower than the alloy class discussed above and, as such, is only applicable
for substantially lower vessel temperature, such as in the case of the HTTR at JAERI.

3.3.4 Control Rod and Composite Structures

A number of structural composites were identified for potential use in control rods and other
composite structural applications in the NGNP. The components and potential materials are shown in
Table 3-3. The reason that composites of either carbon/carbon (C;/C) or SiC;/SiC must be considered for
these applications is long-term exposure to temperatures greater than 1000 °C. At these temperatures,
most metallic alloys are ineffective.

Table 3-3. Potential structural composite applications.
Graphite CsC SiC¢-SiC
Hot duct X X

Core support pedestal

Fuel blocks

Replaceable outer/Inner reflector blocks
Top/bottom insulation blocks

Upper plenum block

Floor block

Upper core restraint and upper plenum shroud
(Structural liner and insulation)

XXX X X X

Control rods and guides

Future qualification tests will be required to delineate which of the composites are the best choice for
a given component, based on the response of the composite to exposure conditions expected within the
reactor. C¢SiC composites are not included in the table because they might exhibit cracking problems
due to the use of dissimilar materials. Use of C;/C composites appears to be desirable for many
applications within the reactor because of their strength retention at high temperatures. Ceramic
composites made from silicon carbide fibers and silicon carbide matrices (SiC¢/SiC) are also promising
for nuclear applications because of the excellent radiation resistance of the [} phase of SiC and their
excellent high-temperature fracture, creep, corrosion, and thermal shock resistance. In addition, there is
some evidence that SiC¢/SiC composites have the potential to be lifetime components (no change-out
required) within the high radiation environment within the core. Unfortunately, the SiC;/SiC composites
have not been as well characterized as C;/C composites, so there is more uncertainty in the applicability.
Therefore, it will be necessary to carefully evaluate both C/C and SiCy/SiC for the control rod material.

3.3.5 Intermediate Heat Exchanger

An intermediate heat exchanger will be needed for hydrogen production and other process heat
applications. It may also be desirable to use an indirect cycle for electricity production. The reactor
coolant system pressure will be about 7 MPa, and the difference from the primary to secondary circuit
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pressure may be small (0.1 MPa) if helium is used for the intermediate heat transfer loop or it may be
larger if a liquid salt is used for the intermediate heat transfer loop. If liquid salts are used, the
intermediate heat transfer loop can be operated at any desired pressure, including the option of
maintaining the pressure half way between reactor coolant pressure and the pressure in the chemical plant
heat exchangers.

The intermediate heat exchanger will be contained within a pressure vessel. The leading
intermediate heat exchanger design for this cycle is a compact counter-flow configuration that involves
channels passing through diffusion-bonded metallic plates. Transient thermal loadings could be a
problem, but the details needed to identify the materials performance requirements will depend on the
design selected. Environmentally induced degradation of the metals from impurities in the helium or flow
induced erosion is a concern. Aging effects are a concern for very-long-time thermal exposure, since
embrittlement could affect the performance of the intermediate heat exchanger during thermal transients.
Welding/brazing and fabrication issues exist that will depend on the intermediate heat exchanger design
details. Again, the leading potential candidates for service at temperatures of 900 to 1000 °C are Alloy
617, Alloy X, and Alloy XR. Other nickel-base alloys such as CCA617, Alloy 740, and Alloy 230, could
be considered. Possibly, the compact intermediate heat exchanger could be fabricated from a Cy/C
composite. Alternate intermediate heat exchanger designs such as tube-and-shell intermediate heat
exchangers introduce concerns that can only be addressed when more is known about the performance
requirements.

3.3.6 Power Conversion System

The key components of the NGNP power conversion unit will include turbines, generators, and
various types of recuperators or heat exchangers. Considerable materials work may be involved in both
the turbine and the generator components, and existing component manufacturers are an excellent source
of the needed materials information. As such, much of the turbine and generator materials efforts will be
performed via subcontracts to existing manufacturers. However, early efforts should be conducted to
identify the materials preferred by various manufacturers and to assess the performance potential of these
materials under operating conditions representative of the NGNP.

The recuperator may be a modular counter-flow helium-to-helium heat exchanger; its most likely
design has corrugated-plate heat exchange surfaces. Recuperator technology for the temperatures and
pressures of operation is relatively mature. For gas turbine applications, tube-on-plate and primary
surface units are often fabricated from fine-grained 300 series stainless steels. Recuperators in which the
corrugated plate surfaces are sealed by brazing have suffered from thermal fatigue when pushed to higher
temperatures, but the NGNP operating conditions may not subject the recuperator to severe cycling.

3.3.7 Valves, Bearings, and Seals

A few valves may be required in the primary or secondary piping systems for this plant, and a
flapper valve may be used in the shutdown cooling system. Bearing surfaces exist between the reactor
pressure vessel and the core barrel. Seals may be required in a variety of locations. However, insufficient
information relating to the specific requirements and issues relating to valves, bearings, and seals is
available at this time to initiate R&D activities.

3.4 Materials Qualification Testing Program

The following discussion follows an order of priority established for the materials R&D work. The
projects funded in FY-05, in order of priority, include:

1. Test and qualify core graphite materials

2. Develop an improved high-temperature design methodology for use of selected metals at very
high temperatures
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3. Develop ASME and ASTM codes and standards

4. Perform environmental testing and thermal aging of selected high-temperature metals
5. Reactor pressure vessel materials irradiation testing and qualification

6

Develop and qualify composites

7. Resolve reactor pressure vessel fabrication and transportation issuesThe focus of each project
described in this document is on work to be performed in the first two to three years of the program,
before completion of the NGNP conceptual design. The content of the projects is specifically designed to
envelop the high-priority and long-lead materials R&D information anticipated to be required regardless
of the NGNP system design chosen. Subsequent detailed project content will be aligned with design
chosen for the NGNP by the industry partner. Note that not all of the projects discussed below are
currently funded.

3.41 Graphite Testing and Qualification Project

Significant quantities of graphite have been used in nuclear reactors, and the general effects of
neutron irradiation on graphite are reasonably well understood. A photograph of an early French gas
reactor core is shown in Figure 3.2. However,
models relating structure at the micro and
macro level to irradiation behavior are not
well developed. Also, as mentioned above,
much of the past work was specific to a
graphite known as H-451, which is no longer
available.

3.4.1.1 Graphite Selection Strategy

Several candidate graphites have been
identified for components within the NGNP
(Table 3-6). In selecting candidate graphites
for the major components of the NGNP,
several factors must be considered. Inclusion
of all graphites in the materials R&D program
is clearly cost prohibitive. Consequently, the
scope of the NGNP graphite program will take : : ;
into account the other activities within the GIF  Figure 3-2. Photograph of an early French gas
for graphite database development (especially reactor core.
irradiation experiments) and the graphite
needs of the prospective reactor suppliers.

Moreover, the criteria for selecting graphites will consider whether the particular graphite can satisfy
multiple reactor vendor design requirements and whether there are sustainable precursors for extended
production runs over the reactor’s lifetime. Cost and schedule for this effort will be reduced by limiting
the amount of material that needs to be irradiated and subjected to testing.

A strategy for the selection process, acquisition process, and material receipt and storage
requirements for the purchased graphite is being developed. GIF members and potential reactor vendors
have been solicited for input. A draft GIF collaboration plan for graphite procurement and testing should
be available for discussion in December 2004. A series of meetings in Europe in early 2005 will finalize
the selection and acquisition aspects.
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Table 3-6. Candidate graphites for the core components of the NGNP.

NGNP Concept Component Description Candidate Grades

Prismatic block  Fuel element and replaceable reflector ~ Graftek PCEA
SGL Carbon NBG-10,17,18
Toyo Tanso IG-110

Prismatic block  Large permanent reflector Graftek PGX
SGL Carbon HLM

Prismatic block  Core support pedestals and blocks Graftek PCEA
SGL Carbon NBG-10,17,18
Carbone USA 2020
Toyo Tanso IG-110

Prismatic block  Floor blocks and insulation blocks Graftek PCEA
SGL Carbon NBG-10,17,18

Pebble bed Reflector structure Graftek PCEA
SGL Carbon NBG-10,17,18
Toyo Tanso IG-110

Pebble bed Insulation blocks Graftek PCEA
SGL Carbon NBG-10,17,18

3.4.1.2 Graphite Irradiation Creep Capsule Design and Planning

The graphite fuel and moderator blocks are subjected to compressive stress due to the mass of the
core and tensile and compressive stresses because of thermal gradients and irradiation-induced graphite
dimensional changes. When the reactor shuts down, the stresses generally reappear in the opposite
(tensile) direction, and block failure may occur. Figure 3-3 shows some of the creep irradiation data
obtained for H-451 in the 1970s.

Note that significant graphite 4.5 y=75451x+0244
irradiation creep can occur at the < 4 aanc] R?=09513~" .
temperatures and stresses of < 35 900C
interest to the NGNP. Similar data ~ § 3
needs to be obtained for the nuclear 9 2'2
grade graphites available today. ] 15
c -

Engineers at the INL, in S 1 . :.21:‘:_(8;3; =
consultation with graphite experts = 05
at ORNL, have started an ATR 0-
creep capsule design. Prior Oak 0 0.1 02 0.3 0.4 0.5 0.6
Ridge Research Reactor (ORR) ) Neutron Dose (10 = "Icm,z E>S0keV) )
and Idaho Engineering Test Figure 3-3. H-451 graphite creep strain at 900 °C as a function

Reactor (ETR) graphite creep test of neutron dose and compressive stress.

capsule designs are being used as

the basis for the new design (the previous ORR test capsule design used to produce the data in Figure 3-3
is shown in Figure 3-4). The graphite samples will be loaded under compressive stress and irradiated at
representative temperatures. In addition to creep rate data, postirradiation examination of the control
samples will yield valuable irradiation effects data. Early planning is underway to establish the
irradiation goals and test parameters. The graphite samples will be selected from multiple vendors and
grades of graphite. The capsule will be designed, all necessary QA documentation prepared, and an
experimental plan prepared in FY-05. Capsule construction and bench testing will commence in FY-06.
It is anticipated that creep irradiations will be completed in FY-07 or -08.
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Figure 3-4. Oak Ridge Research Reactor graphite creep capsule design.

Design of the capsule requires 4 to 7 columns of 12-mm-diameter graphite rods be irradiated in a
temperature-controlled environment. The graphite rods will consist of multiple specimens 25 mm in
length. The specimens will alternate in each stack between different nuclear grade graphites from
different vendors. The stressed samples will be subjected to compressive loads by a pressurized metallic
bellows exerting a constant force. A load cell will be located in the test train of each of the columns to
allow real time determination of the load on the stressed specimens. The load cell will be located above
the core at a sufficient distance to minimize damage from heat and radiation. The capsule will have a
mixture of helium/argon gas flowing through the capsule to control the temperature and the gas
pressurizing the bellows. A PC controller will record the multiple thermocouple temperatures and load
cell data. The temperature and column loading will be automatically controlled within specified limits. It
is estimated that 170 days of irradiation will be required in the south flux trap position in ATR to achieve
the desired fluence of 4.1 x 10*' n/cm” for E> 0.18 MeV.

3.4.1.3 Graphite Model Development for Predicting Irradiation Effects

Mathematical models must be developed that describe and predict the behavior of nuclear graphite
under neutron irradiation. Such models should be based on physically sound principles and reflect known
structural and microstructural changes occurring in graphites during fast neutron irradiation, such as
changes in crystallinity, pore shape, coefficient of thermal expansion (bulk and single crystal), etc.
Models for the graphite irradiation dimensional changes and irradiation creep behavior are a priority.
Existing irradiation data may be used for model development, but validation of the models must be
conducted using irradiation data obtained on the newer nuclear graphites being considered for the NGNP.
Input data for such models must be obtained from the NGNP candidate graphites. Several modeling
approaches will be explored. For example, models will be considered based on microstructural changes
described by bulk and crystal coefficient of thermal expansion changes, or on fundamental atom-
displacement models linked to finite element codes.

Initial discussions have centered on setting up a computer model test bed that would be used to
model the entire graphite core behavior with the material properties developed from ongoing
postirradiation examination and future irradiation tests. The test bed will be finite element based. Initial
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work on this project will determine which of the commercial finite element packages will be used to
support the work.

The OECD/NEA Expert Group meeting on Modeling of Microstructure Property Relationships in
Irradiated Graphite, SiC, and C/C Composites at High Temperatures at Manchester University in the UK
during January 2005 should provide a suitable format to establish an initial modeling approach that is
coordinated with our international partners.

6
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+  Structural change (via scanning electron microscope dimensional changes as a function
examination) of orientation and temperature.

*  High-temperature annealing study (~1500 °C)

3.4.1.5 High-temperature Graphite Irradiation Experiments

There are few data for the irradiation behavior of graphite at temperatures >1000 °C. Hence, a high-
temperature graphite irradiation capsule for use in HFIR will be designed that will be capable of
irradiating graphite samples at temperatures up to 1200 °C. Evaluation will determine the most
appropriate HFIR vehicle for these irradiations based on capsule size limitations, ease of attaining the
desired temperatures, and availability of space in the HFIR (e.g., rabbit capsule, target capsule, or
reflector capsule). The first capsule will be designed, along with an experimental plan and required QA
documentation, in FY-05. Irradiation data to be determined on the candidate graphite(s) will include the
items listed above in Section 3.4.1.4. The pre- and post-irradiation examination will be conducted at
ORNL.

3.4.1.6 GIF Graphite Irradiation Review

This task (currently unfunded) involves reviewing both historical and ongoing graphite irradiation
data available through the International Atomic Energy Agency (IAEA). This will be a joint effort
between INL and ORNL, requiring foreign travel to IAEA contributor’s sites for discussion with principal
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investigators and physical collection of data. An NGNP white paper will outline directions for
requirements for future irradiation capsules, follow on post-irradiation examination work, and
requirements for future data collection.

3.4.2 High-Temperature Design Methodology Project

The High-temperature Design Methodology (HTDM) project will develop the data and simplified
models required by the ASME B&PV Code subcommittees to formulate time-dependent failure criteria
that will ensure adequate life. This project will also develop the experimentally based constitutive models
that will be the foundation of the inelastic design analyses specifically required by ASME B&PV Section
II1, Division I, Subsection NH.

The HTDM project will produce test data, analyze results, and develop constitutive models for high-
temperature alloys. Equations are needed to characterize the time-varying thermal and mechanical
loadings of the design. Test data are needed to build the equations. The project will directly support the
reactor designers on the implications of time-dependent failure modes and time and rate-dependent
deformation behaviors. The project will also develop data for regulatory acceptance of the NGNP
designs. Safety assessments required by NRC will depend on time-dependent flaw growth and the
resulting leak rates from postulated pressure-boundary breaks. This requires a flaw assessment procedure
capable of reliably predicting crack-induced failures and the size and growth of the resulting opening in
the pressure boundary. Identifying an overall proven procedure is a part of this project.

The HTDM effort is required because the current high-temperature metal alloys design rules are
based on the separation of time- and rate-independent response, or on strain-hardening idealizations of
material behavior. Components operating at high temperature respond to thermal and mechanical
loadings inelastically. At the lower temperature end of a material’s useful elevated-temperature operating
range, the inelastic response can usually be separated into time-independent plasticity and time-dependent
creep. Each can exhibit complex, history-dependent hardening or softening, and the two types of
response can interact with one another (i.e., prior plastic strains affect subsequent creep responses, and
vice versa.). At higher temperatures, the distinction between rate-dependent plasticity and time-
dependent creep blurs for many materials (e.g., modified 9Cr — 1Mo steel and Alloy 617), and the
separation between behaviors is no longer valid. The response becomes rate and time dependent, and
both strain and cyclic softening occur. This high-temperature inelastic response has significant
implications for structural design, involving plasticity, creep, viscoplastic behavior, and inelastic
ratcheting.

The use of linear damage fractions and the current linear damage accumulation design rule for creep
fatigue is inadequate at higher temperatures and longer operating times. Various improvements in
damage methodology, such as those based on ductility exhaustion and damage rate, have been proposed,
but sufficient work to allow for their acceptance as a replacement for the linear damage accumulation rule
in B&PV Code Section III, Subsection NH, has not occurred.

Most high-temperature structural failures occur at weldments. Welded pipe, for example, has failed
in high-temperature fossil plants after many years of operation. Reliably guarding against weldment
failures is particularly challenging at high temperatures, where variations in inelastic response of the
constituent parts of the weldment (i.e., weld metal, heat-affected zone, and base metal) can result in a
strong metallurgical discontinuity. In the hearings for a construction permit for the Clinch River Breeder
Reactor Project, NRC identified early weldment cracking as the foremost structural integrity concern.
The NRC believed that designers should have better understanding of the metallurgical interactions that
take place in weldments and their effects on weldment life. The CRBRP committed to a five-year
development program to address these issues before issuance of a plant-operating license. The program
was never carried out because of the subsequent demise of the project.
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As with metallurgical discontinuities, geometric discontinuities (i.e., notches and other local
structural discontinuities) are sources of component failure initiation. The adequacy of the methodology
to handle such discontinuities will likely be reliability and licensing issues, particularly when heat-to-heat
variability, strain hardening/softening, and cyclic loadings are considered. In priority, this was the second
highest unresolved issue (after weldments) in the CRBRP licensing hearings, and, again, the NRC
required a development program. Reviewers believed that the effects of stress gradients were not
reflected in creep-fatigue design limits, and that general notch weakening and loss of ductility under long-
term cyclic loadings were not well understood.

The Alloys 617 and Grade-91 steel have been selected for use in initial improved high-temperature
design methodology development. The primary reasons for this selection include:

*  Pending ASME Section III draft code cases
*  Known high-temperature mechanical properties of the alloys

*  Extensive use of the Alloy 617 in non-nuclear very high-temperature applications.

This development is initially being directed toward Alloy 617 joints in the intermediate heat
exchanger because we already have an existing Alloy base metal study underway, the joints are a critical
weak link in high-temperature structures, and weldment fatigue data was identified as needed in earlier
ASME and NRC reviews of Alloy 617 knowledge.

It is recognized that Alloy 617 is a very mature, high-temperature alloy, but it still has a number of
issues that must be addressed to allow its longtime usage under the environmental and loading conditions
envisioned. The ASME and the NRC have identified major shortcomings in understanding the
interactions of creep, fatigue, and environment in these alloys and their weldments. Resolving these
issues for Alloy 617 will develop both a technical approach to apply to other high-temperature alloys and
reinvigorate the ASME activities needed for their codification within ASME Section III, Subsection NH.

The proposed program will begin to address these deficiencies by studying rate-dependent stress-
strain behavior at relatively short times, creep, and creep-fatigue-environment interactions in Alloy 617,
leveraging the results of existing programs on Alloy 617 base and weld metal and providing early data
needed to complete development of high-temperature design methods required for its codification for
nuclear service. Specific near-term activities are described in more detail in the tasks that follow. Other
alloys will be added to the program based on need and funding provided.

3.4.2.1  Alloy 617 Specification
The standard specification for Alloy 617 may have to be modified to:
*  Optimize long-term properties at elevated temperatures

*  Minimize environmental effects caused by exposure to VHTR He impurities at elevated
temperatures.

Therefore, we may need to develop a controlled chemistry specification for Alloy 617. It is expected that
the specification will be developed based on literature review and consultation with Special Metals and
the French. The controlled chemistry Alloy 617 specification previously developed for fossil program
will also be being evaluated. The evaluation will allow procurement of Alloy 617 in FY-06.
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3.4.2.2

A new servo-hydraulic load frame was ordered at the INL to support this work during FY-04.
Procurement and checkout of an environmental chamber for this new servo-hydraulic load frame so that
creep-fatigue testing can be performed in a controlled environment will be completed in FY-05. In
addition, the Alloy 617 fusion welds will be characterized and the basic microstructural properties and
strength characteristics of the welds will be determined. As with the base metal testing, the subsequent
high-temperature testing will incorporate extensive microstructural study of the damage development to
determine the micro-mechanisms by which loading and environment interact in the welds, thereby
achieving a better theoretical underpinning for
component lifetime models and high-
temperature structural design methodology.
The results may also reveal unforeseen
synergisms between weld microstructures,
loading, and environmental exposure.

Alloy 617 Joint Characterization Experiments at the INL

The creep-fatigue testing at the INL will
be performed on Alloy 617 specimens with
fusion welds in impure helium at 800 to 1000
°C. The program will leverage programs
currently in progress, including work on Alloy
617 within the Ultra-Supercritical Steam Boiler
(USCSB) program at ORNL and the Materials
for Energy Research (MER) program at the
INL. The objective MER work is to study
fundamental creep-fatigue-environment

interactions in Alloy 617 and clearly
distinguish environmental and mechanical
damage components, and also compare
behavior in aggressive and inert environments.
The project has three components:

1. Creep-fatigue (C-F) testing and
microstructural analysis

2. Development of laser ultrasonic NDE
techniques

3. Phenomenological and atomistic
modeling

The preliminary test variables include:

—Environments: air and high-purity He
(inert)

—Temperatures: 800 and 1000 °C

Figure 3-6 shows one of the MER tests in
progress in air at 1000 °C. Figure 3-7 shows

Figure 3-6. Creep-fatigue test in progress in air at
1000 °C at the INL (furnace opened to show
cimen).
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Figure 3-7. Microstructure of Alloy 617 aged 100
hours at 1000 °C with course carbide on grain and
twin boundaries.

the microstructure of Alloy 617 aged 100 hours at 1000 °C. Note the course carbides on the grain and

twin boundaries.

42



3.4.2.3 Testing and Constitutive Equation Development at ORNL

Aging of inert atmosphere encapsulated base alloy and welded samples for 10,000 h and 1000 °C
will also be performed at ORNL. Post-exposure characterization will include microstructural
examination, limited creep-fatigue testing, and fracture toughness testing. The characterization will
provide time-dependent input for constitutive equation development and a baseline of thermal aging
effects in the absence of environmental effects relating to impure helium exposure.

Scoping tests of Alloy 617 creep in helium environments and stress-strain evolution will be
performed on base metal and welded specimens. Creep and creep-fatigue tests will be concentrated in the
temperature range from 800 to 1000 °C to complement the lower temperature testing being conducted in
the USCSG program. A limited set of initial test conditions will be determined, based on base metal data
to complement those in the existing USCSB and MER programs. These conditions will include tests in
impure helium and inert or oxidizing environments. Some of the ORNL equipment to be used for this
work is shown in Figure 3-8.

Alloy X, XR, 800, and 800H evaluations
will also be performed, which will include
the procurement of these materials, from
which fusion welds will be produced and
characterized.

3.4.24 Alloy 617 Data Base

As a companion activity to the high-
temperature scoping tests and before the
substantial effort needed to generate the large
database of mechanical property data needed
for codification, a thorough assessment and
compilation of existing Alloy 617 data are
required. This effort will assess the validity
of existing test data (e.g., is the helium
environment in which data were generated
indicative of NGNP conditions?) Substantial
advantages in terms of time and cost will be
gained by leveraging the USCSG database. A
partial database from the ASME Materials
Property Council may exist and may be
acquired as well. The results of the proposed scoping tests and the review of existing materials database
on Alloy 617, including the USCSG’s database, will allow researchers to construct a well-defined and
focused materials test plan. An in-depth survey of literature will be conducted of components at very
high temperature. This will include constitutive equations for stress-strain evolution under various
loading conditions for Alloy 617 and Alloy X/XR, efforts at addressing multi-axial effects on damage,
and extrapolation of relatively short creep data for use in designing a reactor for a 60-year life. The
information will be integrated into the Generation IV materials database.

3.4.3 Support for the ASTM and ASME Code

There are a number of areas relating to ASTM standard method development and ASME B&PV
Code development that must be pursued to meet the NGNP goals. The NGNP Materials R&D Program
must initiate a presence at ASTM and ASME B&PV Code meetings at the relevant committee and
subcommittee level in order to incorporate new materials and/or extend the application of materials
presently in the Code and/or further develop test standards.

| T 8 & .
Figure 3-8. ORNL environmental creep machines
used in former high-temperature gas-cooled reactor
projects will be refurbished to support the NGNP
program.
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3.4.3.1 Development of Elevated Temperature Design Rules for Metallic Alloys

Much of this effort will provide required technological support and recommendations to the
Subgroup on Elevated Temperature Design (NH) as they develop methods for use of Alloy 617 at very
high temperatures. In addition to inheriting the known shortcomings of Subsection NH, the Alloy 617
draft ASME Code case has a number of gaps and shortcomings that must be overcome before it can be
satisfactorily and reliably applied. Therefore, a new ASME Code case needs to be written. The following
tasks were identified as the Code case was being developed:

*  Alloy 617 must be added to the low-temperature rules of ASME Section III
*  Weldment stress rupture factors must be added

*  Thermal expansion coefficients must be added

*  Additional isochronous stress-strain curves must be added

*  Create simplified methods.

In addition to the Alloy 617 related code work, code work will proceed on extending the usage of 2-
1/4 Cr-1 Mo and 9 Cr-1 Mo (Grade 91) reactor pressure vessel steel. ASME and ASTM Activities in
Support of Graphite and Carbon Composites

ASME design code development is also required for the graphite core support structures of the
NGNP and later for the C#/C composites structures of the core. A project team under Section III of
ASME is currently undertaking these activities. Participation of both ORNL and INL staff is anticipated
in this activity. Standard test methods are also required to generate data that may be used in the design
code. The ASTM DO2-F committee on Manufactured Carbons and Graphites is currently engaged in the
final stages of developing a Standard Materials Specification for Nuclear Grade Graphite, and is also
developing several standard test methods for graphites (crystallinity by x-ray diffraction, surface area,
thermal expansion, fracture toughness, and graphite oxidation, for example). Participation of ORNL and
INL staff in the DO2-F committee work will continue. For example, a round robin evaluation of the
oxidation method will be conducted. Similarly, ORNL will lead an assessment to determine the
applicability of the existing ASTM method, the Brunauer Emmett Teller (BET) method, for measuring
the effective surface area of graphite (information needed when assessing the effects of potential air or
water ingress). The method will then be adopted into ASTM C-781 (Standard Practice for Testing
Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors).

Also, the ASTM Committee DO2-F has identified a test method for determining the fracture
toughness (K;.), based on existing Standard C1421 (for advanced ceramics at ambient temperatures).
This standard will be modified to apply to graphite, and ruggedness tests will be performed using several
different graphites. Once a modified version of the standard test method has been established, round-
robin testing will begin. ORNL will analyze the Kic data and develop the ASTM-required research report
with precision and bias data. A standard test method for determining the Kic value of graphite will be
prepared and approved through the ASTM DO2-F committee.

3.4.3.3 Working Group on Composites Testing

INL and ORNL will support the formation of an ASTM working group on SiC¢#/SiC composite
testing development and ensure that guidelines for testing of tubular SiC¢#/SiC structures proceeds. INL
and ORNL will interface with the design community to ensure that the appropriate properties are being
targeted.

3.44 Environmental Testing and Thermal Aging of High-Temperature Metals

The three primary factors that will most affect the properties of the metallic structural materials from
which the NGNP components will be fabricated are the effects of irradiation, high-temperature exposure,
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and interactions with the gaseous environment to which they are exposed. This work is focused on
assessing the property changes of the metallic alloys as a function of exposure to the high-temperature
and impure gas environments expected in the NGNP. The information below describes the overall work
that needs to be performed.

3.4.4.1  Aging Tests

Procedures for the evaluation of aged and “service-exposed” specimens will be developed.
Properties evaluation will be performed on a limited number of materials, including Alloy 617, Alloy
800H, and Alloy X, that have been aged at temperatures as high as 870 °C for long times in helium. It is
expected that aging exposures of more materials will be performed to at least 25,000 h. Mechanical and
microstructural properties of bulk and weld structures will be evaluated, and the determined experimental
properties will also serve as input to and checks on the computational continuum damage modeling
activity for predicting high-temperature life. Results of mechanical testing and microstructural
evaluations of candidate alloys aged 1000, 3000, and 10,000 h will serve as additional input to
computational continuum damage models. The predictions of these models will be compared to results of
testing of materials aged to at least 25,000 h to provide for validation of these models. The mechanical
and microstructural data will also provide input into code rules for accounting for aging effects.

The specimens for long-term aging studies of Alloy 617 will be fabricated at INL. A detailed long-
term materials test matrix will be prepared to examine aging and environmental effects at very high
temperature on Alloy 617.

A review will be performed of the extensive body of work on Alloy 617 and two other candidate
materials to document the applicability of the available thermal aging effects data/information in the
temperature range of interest to the NGNP. This review will also serve to highlight the areas where
additional information is needed.

3.4.4.2 Evaluation of Helium Environments

The out-gassing of even nuclear grade graphites at very high temperatures may release significant
impurities (HpO, CH4, CO2, CO, N, and H?) into the helium coolant of the NGNP. The overall stability
of the NGNP helium environment must be evaluated to ensure the testing proposed in various parts of the
program are performed in environments having consistent chemical potentials. In addition, the corrosion
of metals and nonmetals will be evaluated to establish baseline data where it does not exist. These tests
will be performed at temperatures to include at least 50 °C above the proposed operating temperature.

3.4.4.3 Helium Loops

Design and construction of a recirculating low-velocity helium loop with gas cleanup is proceeding
at INL. Special emphasis is being placed on the gas clean up system, which will serve as the prototype
for a high-velocity loop. The system will be designed to operate using vacuum or inert gas as the
reference atmosphere, with capacity to mix ppm levels of impurities (e.g., H, or CO, or water vapor)
designed to simulate the NGNP environment.

ORNL will also restart two recirculating low-velocity helium loops (Figure 3-9) and initiate gas/gas
studies to establish the dynamic stability of selected metals exposed to a very high-temperature impure
helium environment.

The existing data/information on the environmental effects of impure helium on Alloy 617 will also
be reviewed to document the applicability of existing data for the range of temperature and helium
compositions of interest to the NGNP. This review will also delineate the ranges in which additional data
are needed.
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creep testing capabilities will be
designed and/or augmented as
needed. Existing creep facilities
will be refurbished, and additional
creep-fatigue equipment procured
as necessary to meet the need for
high-velocity and long-term testing
of materials in potentially
contaminated helium environments.
A new test loop will be designed
and constructed for performing the
required testing. It is envisioned
that the test capability will be
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°C, 7.5 MPa pressure, and flow rate ~ for gas-gas studies to establish the dynamic stability of
up to 50 m/s. Despite the selected metal in very high temperature environments.

additional complexity and cost, it is

apparent that a closed loop with gas clean-up capability and compressor will be the only feasible design.
System testing will be in two stages. The first stage will evaluate helium with chemical modifications
only. The second stage will modify the test loop so that particle erosion on test coupons will be added to
the flow of controlled chemistry hot helium. Capability will be added for generating particulate and
characterizing the density and velocity of particles. An important system capability for the erosion test
loop will be the capability to control the angle of impingement of the particles on the surface.

In addition, reactor pressure vessel alloy specimens will be prepared for thermal aging in air. The
materials will be aged for 1000, 3000, and 10,000 h at 650 °C. These experiments will yield relatively
early indication of each material’s response to long-time high-temperature exposure in air, a condition
applicable to the uncoated outer surface of the reactor pressure vessel. The aged materials will then be
tested for tensile, creep, and toughness behavior, and characterized microstructurally. Candidate
materials and weldments will also be aged in the impure helium environment for the same times,
mechanically tested, and microscopically examined. In addition, portions of the candidate materials and
weldments will remain under thermal aging in both air and in helium until at least 25,000 h and tested to
provide longer time data to allow for comparisons with predictive models. Finally, thermal aging of the
prime candidate alloys at the reactor pressure vessel operating temperature will continue for more years to
accumulate data for very long times.

3.4.5 Testing and Qualification of Reactor Pressure Vessel Materials

Some VHTR designs assume the use of higher alloy steel than currently used for LWR pressure
vessels. The irradiation damage and property changes of these materials must be measured. Therefore,
an irradiation facility that can accommodate a relatively large complement of mechanical test specimens
will be designed and fabricated for placement in a material test reactor. This facility will replace the
irradiation facility shown in Figure 3-10 and shut down last year at the Ford Test Reactor at the
University of Michigan. The facility will, of course, include temperature control to allow for irradiation
at the temperatures of interest, and operate at a flux low enough to provide results representative of the
conditions anticipated for the NGNP reactor pressure vessel.
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The new irradiation facility is anticipated to
be a joint DOE- NRC facility. Preliminary design
concept envisions two separate and independent
operating capsules in the facility, one for the
NRC-funded Heavy-Section Steel Irradiation
Program and the other for the Generation IV
Reactor Materials Cross-Cutting and NGNP
Programs. The capsules can be readily designed
and fabricated to operate from 250 to 650 °C, with
a preliminary fast neutron flux of about 1 to 2 x
10" n/cmzs (>1 MeV). The next steps in this
effort involve executing a Memorandum of
Understand (MOU) between DOE and NRC,
issuing a request for proposal (RFP) to potential
irradiation facilities, and site selection. Useful
Figure 3-10. Reusable capsules for reactor hardware will be retrieved from the Ford Test
pressure vessel materials testing at the Facility, and redesign and fabrication will be
University of Michigan test reactor. performed for the irradiation hardware.

Although the operating temperature of the reactor pressure vessel and cross-vessel may change with
evolution of the design, it is currently planned to irradiate mechanical test specimens at about 350 to 600
°C. The choice of these temperatures is based on the assumptions that (1) 600 °C is the highest possible
operating temperature that can be envisaged for the reactor pressure vessel and cross vessel at this time
because of creep, (2) 350 °C is in the range of the lowest operating temperature that would likely require
higher alloy pressure vessel material than the current SA508, which has been extensively tested, and (3)
the range between these temperatures would likely provide sufficient information for design and
operation of the reactor pressure vessel at any intermediate temperature with respect to irradiation effects.
Irradiations of the preliminary candidate materials, both base metals and weldments, will begin in later
years, with the choice of materials to be based on results of a literature review, as well as the baseline and
aging tests completed at the time. For purposes of this plan, specimens to be irradiated will include those
for tensile, hardness, creep and stress rupture, Charpy impact, fracture toughness, and fatigue crack
growth testing. The currently estimated maximum exposure is about 110" n/cmz (>0.1 MeV) and 0.075
dpa. The specimens will be irradiated to an exposure about 50% greater to accommodate uncertainties in
the exposure estimates. A limited number of irradiated specimens will be aged in the impure helium
environment for up to 10,000 h, tested, and examined by optical and electron microscopy.

A decision to conduct further test reactor irradiations beyond those noted above will be based on the
results of the initial testing. As currently required by 10-CFR-50, Appendix H, and prudence, the NGNP
will incorporate a surveillance program. The specific design of the surveillance program will be based on
the results obtained from the test program discussed above, but will likely include, as a minimum, tensile,
Charpy impact, fracture toughness, and creep specimens. Because the NGNP is a demonstration reactor,
the surveillance program will be more extensive than required by the regulatory authority, such that it
could serve as a test bed for irradiation experiments of more advanced materials that may be developed as
NGNP operations progress.

The fluences accumulated in the metallic core internal materials are expected to be low relative to
the tolerances of those structural alloys. Nevertheless, some consideration of the irradiation effects in
those materials is thought prudent. The radiation effects on the metallic reactor internal components will
be reviewed. Exposures and evaluation of the irradiated materials will include evaluation of the radiation-
induced changes in microstructure, hardness, and ductility.
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3.46 Composites Development, Testing, and Qualification

This program is directed at the development of C/C and SiC/SiC composites for use in selected
very high-temperature/very high neutron fluence applications such as control rod cladding and guide
tubes (30 dpa projected lifetime dose) where metallic alloy are not feasible. It is believed that SiC/SiC
composites have the potential to achieve a 60-year lifetime under these conditions. The usable life of the
C/C composities will be less, but their costs are also significantly less. The program will eventually
include a cost comparison between periodic replacement of C/C materials and use of SiC/SiC composites.

Composite materials are being considered for these applications because they are superior
“engineering” materials compared to monolithics. In particular, they have:

*  <Higher strength, especially in tension
*  *Higher Weibull modulus (more uniform failure)
*  *Much higher damage tolerance (fracture toughness)

Figure 3-11 shows a photograph of a typical SiC/SiC composite cross-section along with a scanning
electron microscope photograph of the fiber-matrix interface.

Figure 3-11. Photograph of a typical SiC/SiC composite cross-section (left), and scanning
electron microscope photograph of the fiber-matrix interface (right).

3.4.6.1 Initial SiC/SiC Composite Irradiation Studies

Currently, SiC¢/SiC composites have only been irradiated to fairly low (8 dpa) levels. At this
irradiation dose, the composites are stable and do not show much degradation after about 1 dpa. SiC¢/SiC
composites may be stable out to at least 30 dpa without much degradation; however, this assumption
needs to be validated.

ORNL currently has high purity SiCy¢/SiC samples being irradiated to higher irradiation levels in
HFIR in FY-05. It is expected that the specimens will reach about 10 dpa in FY-05 and 20 dpa in FY-06.
Based on these preliminary results, the irradiation stability of SiC¢/SiC composites versus C/C
composites at higher doses should be resolved. Assuming that SiC¢/SiC composites are more stable,
ORNL will continue irradiating specimens to 30 dpa levels in HFIR over the next few years. This part of
the research is simply to prove that SiCy¢/SiC composites can survive in an irradiation environment
without significant reduction in strength or structural stability (i.e., without “falling apart™).
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Post-irradiation testing in established hot-cell facilities at ORNL will be initiated in FY-05. Testing
will include, but not limited to, the following: thermal conductivity, irradiation-induced dimensional
change, sonic elastic modulus, room-temperature bend strength, burst strength of tubes, slow crack
growth testing of irradiated bars in simulated NGNP gas, and scanning and transmission electron
microscopy of irradiated materials.

In future years, ORNL will select appropriate tube architecture composed of Nicalon Type S fibers.
Nicalon Type-S fibers are being used because of their previous, excellent radiation performance.
Infiltration of the Nicalon Type S fiber matrix will be performed using chemical vapor infiltration with
high-purity SiC. When completed this will be a multiplayer SiC interphase composite. Both flat plate
and tubular geometries will be fabricated. Details of the architecture to be manufactured will be studied
in the initial phases of this project to determine the optimum approach. The matrix will be fully
crystalline beta-SiC.

3.4.6.2 Test Methods for SiCf/SiC Composities

A real problem exists for scaleup of composite materials. Unlike monolithic materials, these
composites are engineered from two distinct materials using complicated vapor infiltration techniques.
The material properties may be affected when the component geometry or size is changed significantly.
This is a major consideration, since small sample sizes and more suitable geometries are required for test
samples. It must be shown that the test samples adequately represent the true response of larger SiCy¢/SiC
tubes used for control rod applications.

Representative samples from these tubes need to be irradiated and fit into ATR irradiation positions.
Test samples much smaller than the actual control rod diameters (about 1.25 to 4 in.) will be required. In
addition, in order to simplify the test rig in the ATR, “dog-bone” shaped flat tensile specimens have been
proposed. This would potentially allow use of one of the “A-hole” positions instead of the larger and
more expensive flux trap positions in the center of the core. However, before these smaller dog-bone flat
tensile specimens can be used, it needs to be established that they are truly representative of the large
tubes that would be used for the control rods. The project will work with the ASTM to establish a proper
test methodology to determine the size and geometry effects of these smaller test samples. A test matrix
encompassing all sizes and shapes to be used will be established. A round robin testing program will be
initiated for all laboratories (ORNL, INL, PNNL, and possibly others) with the appropriate number of
specimens from each category. Before the ASTM testing, the following sample parameters will be
established:

»  Determine appropriate sizes for test specimens. Currently, sample sizes of 3/8, 1/2, and 3/4 in. have
been suggested. These sizes will be verified with the appropriate ASTM subcommittee members.

*  Determine appropriate dog-bone tensile specimen size. These samples are strictly intended to
determine whether flat samples accurately represent right cylindrical tubular samples. One size only
will be used, and results will be compared to the tubular samples.

*  Determine a statistically accurate sample number for each sample type.

Once the sample matrix has been established, the participating laboratories will test the samples
using similar testing methods. The results will be fed back to the appropriate ASTM subcommittee (or
working group) and analyzed. From these data, the size and geometry effects on composite testing will
then be established.

3.4.6.3 INL Out-of-Pile C/C and SiC/SiC Composite Creep Studies

INL has the lead in performing irradiation creep studies on the SiC¢/SiC composites. This task is
designed to prepare INL for performing both out-of-pile and in-pile testing of composite creep samples
(both SiC¢/SiC and C¢/C composites). Specific issues that must be addressed include:
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*  Design and modification of the existing INL creep test stands to accommodate inert atmosphere
testing.

*  Potential modification of some INL creep stands to accommodate very high temperatures (i.e., 1400
°C) for off-normal events.

*  Purchase of additional necessary equipment to perform thermal creep studies for ceramic composite
structures.

*  Out-of-pile creep testing for baseline thermal creep results.

*  Design, development, and coordination of SiCf/SiC, Cf/C, and graphite creep capsules where
applicable.

Basically, the main purpose of this task is to prepare INL to perform ceramic composite creep
studies. This includes building/rebuilding the high-temperature testing infrastructure at INL and
providing the experience necessary to perform the higher-temperature creep experiments. Some of the
anticipated infrastructure changes include modifying the existing creep frames at INL to accommodate
ceramic tube specimens, designing/building new sample grips, building/purchasing new environmental
creep chambers, purchasing new creep monitoring probes, purchasing new furnace elements (high-
temperature elements), purchasing new furnaces, etc.

Preliminary thermal creep studies will be conducted once the appropriate equipment infrastructure is
in place. Ceramic tubes (either tubes from Hypertherm or another supplier) will be tested in the
modified/new creep frames. It is anticipated that small equipment modifications or changes to the
samples/grips will need to be implemented before achieving optimal testing conditions. Experience
gained from these out-of-pile thermal creep tests will be applied to the design of in-pile irradiation creep
tests.

3.4.6.4 INL In-Pile SiCf/SiC and Cf/C Creep Tests

Composite samples representative of the control rod tube architectures will be irradiated within the
ATR to fluence levels similar for a full-lifetime dose (i.e., 30 dpa). These irradiation test samples will
necessarily be much smaller than the actual control rod diameters (of approximately 1.25 to 4 inches) to
accommodate the small irradiation ports within the ATR. In addition, in order to simplify the test rig in
the ATR, small, flat tensile specimens (“dog-bone” shaped) will be irradiated within one of the “A-hole”
positions instead of the larger flux trap positions in the center of the core. This will provide a significant
cost and time reduction in the composite testing.

A statistically representative number of flat, dog-bone shaped composite samples will be fabricated
using fiber architectures similar to those utilized in the baseline mechanical tests in previous years.
Irradiation creep is defined as the dimensional difference between a stressed and unstressed sample within
the same irradiation field. Correspondingly, half of the samples will be loaded in tension to load levels
anticipated for a nominal control rod. The remaining samples will have no loads placed upon them and
will be used as the creep baseline. All samples will be subjected to dose levels of approximately 30 dpa
at temperatures of 800 °C (through gamma heating) within the ATR.

After irradiation, all samples will be examined and differences noted between the samples.
Dimensional changes between the stressed and unstressed samples will provide a total dimensional
change (i.e., total amount of creep). Since in-situ monitoring of the samples is not possible during
irradiation, the data available to determine the rate at which these materials creep will be limited at best.
These initial irradiation creep tests are designed to provide a total or cumulative dimensional change to
the control rod material over a lifetime equivalent dose within the NGNP reactor.
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3.4.6.5 Environmental Effects on C/C and SiC/SiC Composites

It is assumed that the fundamental irradiation response will be similar for all composite architectures
and geometries. However, using different composite architectures (i.e., weave angles, fiber tow counts,
weave structures, etc.) can lead to differences in the engineered materials due to infiltration efficiency,
fiber bending stresses, or matrix/fiber interface characteristics. The environmental conditions these
materials will be subjected to may change the overall creep response of the composite (i.e., creep crack
growth for fiber-reinforced materials).

PNNL has extensive experience in environmental degradation of SiC. They have developed a creep
crack growth model to predict the environmental factors on the overall creep of the SiC¢/SiC composite
structures. PNNL will expand this model to include flat, thin specimens (i.e., simulate flat dog-bone
shaped tensile specimens). It is anticipated that the model may be further expanded to include the 3-
dimensional tubular geometry if applicable or desirable later.

To improve the accuracy of the model predictions, PNNL will determine a limiting environment for
elevated temperature tests. Most likely, the limiting environmental species in the helium environment
will be the Hy/H,O ratio. Assuming these species are the most damaging to the composites, PNNL will
determine the degradation potential for various H,/H,O ratios using both modeling and experimental tests.

3.4.6.6 Cf/C Composites

The C¢/C composites have performance issues similar
to the SiC/SiC composite structures for control rod
applications. A typical C/C composite cross-section and
weave pattern is shown in Figure 3-12.

A survey of potential vendors will be conducted
(domestic and foreign) to ascertain which vendors have the
capability to fabricate complex architecture C/C composite
components and what sizes can be processed. For the
control rod assemblies, where neutron damage is a concern,
consideration must be given to the ease of processing of the
preferred fibers (mesophase pitch derived), which tend to
have high modulus and are thus very difficult to weave.
Heat treatment capabilities and furnace sizes/availability
will be determined. NGNP designers will require this
information in order to size the larger C#/C components of
the NGNP. ORNL personnel will conduct this study and
issue a white paper report.

Candidate Ct/C composite materials for NGNP control
rod applications will be purchased against a materials
specification. The materials will be typical of those used in
the NGNP components in terms of their fiber and matrix
selections, and processing conditions. It is anticipated that
a review of New Production Reactor literature and R&D Figure 3-12. Typical C/C composite cross-
activities in this area will be conducted before placement of  gection and weave pattern.

a purchase order. Existing 3D C¢/C materials will be
evaluated for the control rod application. Irradiation program needs will be evaluated.
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3.4.6.7 C/C and SiC/SiC Composites I-NERI

The United States and France have agreed to fund a three-year [-NERI directed at the composites
R&D needs for the VHTR. INL will coordinate the project with the other entities involved: PNNL, CEA,
LCTS (University of Bordeaux), and SNECMA/GE Energy. The objectives of this project are to:

*  Develop tubular SiC/SiC composite material for control rod and guide tube structure applications
with requisite thermal, mechanical, and irradiation resistance properties

*  Optimize the tubular SiC/SiC properties with advanced material synthesis methods using high-purity
materials

*  Generate a property database for the optimized materials using standard test methods (ASTM)

*  Compare the results obtained for tubular SiC/SiC composites and flat plate composites made by the
current state of the art

*  Irradiate SiC/SiC tubes at high flux levels for long times at elevated temperature and perform post-
irradiation examinations.

SNECMA will develop innovative 2D SiC/SiC technologies using multilayered interphased
(combined with Hi-Nicalon) fibers, with support from LCTS. GE Energy will manufacture the very long
SiC/SiC tubes necessary for qualification testing for control rod applications in the NGNP.

High-temperature testing of SiC/SiC tubes in impure He gas will include:
*  Tensile tests (LCTS, INL)
*  Creep experiments (PNNL)
*  Delayed fracture and crack growth resistance (PNNL)
»  Failure analysis as a function of composite architecture, including interface design (LCTS)
*  Thermal conductivity versus temperature (PNNL).

*  Specifics of the irradiation testing and the post-irradiation examination will be defined later. The
irradiation testing will be performed at INL. The following deliverables are planned:

*  First SiC/SiC tubes delivered to PNNL and INL (FY-05, LCTS)
*  Optimized material design report (FY-05, LCTS)
»  Failure analysis report (FY-06, LCTS).

Other deliverables will be determined following an initial planning and review meeting to be held in
Cocoa Beach, Florida in January 2005.

3.4.7 Data Management and Handbook

The organizational structure for the preparation, control, etc., of NGNP data needs will be finalized
for incorporation into the Gen IV Materials Handbook being developed in the Materials Crosscutting
Program. Existing materials handbooks will be examined to determine what information might be
extracted and incorporated into the Gen IV Materials Handbook. The primary documents to be reviewed
will be the DOE-funded Nuclear Systems Materials Handbook and the AFCI Materials Handbook,
followed by relevant portions of other ASME, Pressure Vessel Research Committee, American Society
for Metals, etc., documents.

A Gen IV Materials Handbook plan will be prepared to identify needed management structures,
advisory groups, working bodies, etc. This will establish the details of the handbook’s scope and format,
including what materials to include (at least initially), what properties to incorporate, and how these are to
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be presented. It may be that hands-on physical preparation and maintenance of the handbook will best be
by an outside organization familiar with preparation of similar documents. This task will assess this
possibility and, if appropriate, identify and down-select among the qualified outside sources.

A Gen IV Materials Handbook implementation plan will be prepared to detail the purpose,
preparation, publication, distribution, and control of the handbook. It will also prescribe records required,
QA, and review and approval responsibility and authority. Once fully implemented, the Handbook will
become the repository for the NGNP materials data and serve as a single source for researchers,
designers, vendors, codes and standards bodies, and regulatory agencies. It is also planned to evaluate the
potential for including similar data from GIF international partners. Near-term activities in this area will
include assembling and inputting existing data on materials of interest to NGNP.

3.4.8 Reactor Pressure Vessel Transportation and Fabrication Assessment

Reactor pressure vessel heavy section fabrication is a major issue that needs to be evaluated. Several
potential candidate pressure vessel steels have been identified for the reactor pressure vessel and cross-
vessel (see Section 3.3.3). It is unlikely that manufacturing of the NGNP reactor pressure vessel will take
place in the United States. Preliminary considerations and discussions indicate that Japan Steel Works is
the most likely source of forgings of the required size. The physical size of even the largest required
forging appears to be within their range of capability; however, the specific material selection is critical in
that very large forgings of most of the potential candidate alloys (other than SA508) have not been
manufactured, including the 9Cr-1Mo-V alloy.

The main issue will be attaining the required through-thickness properties of the higher-alloy steels
in such thick sections. In addition, welding of the steels in thick sections is also an issue. Therefore,
fabrication and inspection will be major considerations in the selection of materials. Besides the technical
issues, transportation of the completed reactor pressure vessel or large ring forgings from the vendor
facilities to the reactor site may be an issue. It is possible that the reactor pressure vessel will require field
fabrication, meaning welding of the ring forgings, heads, etc., onsite. In this case, the conduct of the post-
weld heat treatment takes on more significance in that the post-weld heat treatment is more difficult to
conduct and control than when performed in the shop.

This review will enlist the assistance of consultants with expertise in large vessel fabrication,
particularly with low-alloy and medium-level chromium ferritic steels. If high-chrome low alloy steels
are retained as the prime candidate materials, they will require developing fabrication, heavy-section
welding, and post-weld heat treatment. Production of such forgings with the potential candidate alloys
will be evaluated during the review. The assessment will also include transportation of individual ring
forgings or a partially completed reactor pressure vessel to the United States and a fully completed reactor
pressure vessel to the construction site in Idaho. The assessment will include evaluation of domestic
welding and heat-treating capabilities for the potential case of final fabrication of the reactor pressure
vessel in the United States and transport of the completed reactor pressure vessel to the construction site.

In future years, a fabricator will be chosen to fabricate forgings of sufficient size to represent the
largest and thickest one required for the reactor pressure vessel. These forgings would be evaluated with
mechanical testing and microstructural characterization. As a part of this task, a review will be conducted
of nondestructive examination (NDE) procedures for the preliminary candidate materials. If the review
indicates need to develop procedures specific to those materials, NDE procedures will be developed with
a view toward satisfying the requirements of the ASME Code and the NRC, and incorporate the
procedures in the required in-service inspection program.

3.49 Reactor Pressure Vessel Emissivity (Unfunded in FY-05)

Emissivity data are needed on the various potential candidate materials for the reactor pressure
vessel. These are necessary because cooling of the reactor pressure vessel during normal operation and,
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most important, during a pressurized or depressurized conduction cooldown accident occurs partially by
radiation from the outer surface to the air and reactor cavity cooling system in the cavity between the
reactor pressure vessel and surrounding concrete. It is therefore necessary to have a stable, high
emissivity on the external surface of the pressure vessel at elevated temperatures. Depending on the
emissivity of the selected material, it may be necessary to incorporate a high emissivity coating on the
outer surface of the reactor pressure vessel.

Preliminary emissivity screening testing of the potential candidate materials will be performed to
determine the detailed experimental program needed for developing a stable surface with minimum
emissivity required for adequate cooling of the reactor pressure vessel. Concurrent with that testing, a
surface treatment/coatings program will be conducted to investigate the efficacy of various potential
concepts for either increasing the emissivity of the reactor pressure vessel materials or providing a coating
that will have the required emissivity.

3.4.10 Internals Materials Testing and Qualification (Unfunded in FY-05)

The existing database for candidate alloys will be assembled, analyzed, and evaluated with respect to
the design and operating requirements for the reactor internals. Principal topics for review will include
high-temperature strength, stability, and long-time performance under irradiation of the materials, effects
of impure helium on the mechanical and physical properties of the materials, codification status,
prospects, and needs. The status of the joining technology will be reviewed. The weld metal and
weldment database will be collected for the candidate alloys. And the technology behind the weld
strength factors under development by the ASME and other international codes will be reviewed in
collaboration with activities on design methodology. The neutron fluences accumulated in the metallic
core internal materials are expected to be low relative to the tolerances of the structural alloys.
Nevertheless, these will be reviewed and details developed for confirmatory testing and evaluation.
Based on the results of the review, details of the program will be developed to evaluate the mechanical
and fracture properties of the leading candidates, along with their environmental and irradiation response.

Joining technology will be developed and experimental work started. Weldments will be produced
for mechanical testing, aging studies, and microstructural characterization. Creep-rupture and creep crack
growth testing will be started. Environmental testing and creep-fatigue will be performed, and
computational models will be used to predict weld microstructures. Microstructural evaluations will be
completed on aged materials. Microstructural parameters will be quantified for use in damage prediction
models. Weld strength reduction factors will be preliminarily estimated. Candidate weld metals will be
ranked for performance. Data will be provided to the design methodology activity to explore the
constitutive behavior of weld metal relative to base metal. Weldment test data required for the efforts on
design methodology will be produced, and testing of welds will establish confidence in the modeling
efforts and the code rules developed from testing and modeling.

3.4.11 Intermediate Heat Exchanger Fabrication Testing (Unfunded in FY-05)

The leading potential candidate alloys will be identified in the course of a detailed assessment. Most
likely, these materials will be Alloy 617, Alloy XR, and Alloy X. New alloys, such as CCA617, Alloy
740, and Alloy 230, will be considered as alternates. Assessment will also be undertaken of the potential
of C#/C composites for the compact intermediate heat exchanger. The baseline materials data generation
program for the intermediate heat exchanger will focus on characterizing the material of construction as it
is influenced by the specific fabrication procedures needed to produce the compact intermediate heat
exchanger configuration. The material performance requirements will be developed, and a list of leading
candidates will be identified. It will be necessary to decide whether the fabrication processes selected
should produce a material of optimum metallurgical condition or whether an off-optimum material
condition is satisfactory. At 1000 °C, most of the wrought nickel base alloys require relatively coarse
grain size for good creep strength, but fatigue resistance is best for fine grain size.
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Exploratory testing will undertake to establish the effect of fabrication variables on the subsequent
creep and fatigue properties. Bench testing small models of the intermediate heat exchanger will be
performed to add confidence to life prediction methodologies. Manufacturing issues relating to the
compact counter-flow intermediate heat exchanger will be addressed as part of the research and testing. It
has yet to be demonstrated that such a unit can be manufactured from the leading candidates of high-
temperature alloys, so it is clear that the manufacturing of such a unit will produce several issues to be
resolved. Issues include production of a high-integrity diffusion bond between the sheets of metal used to
build the module, control of conditions that result in an optimum grain size in the metal ligament,
development of methods for NDE of the unit, and design and fabrication of joints between the unit and
the inlet and outlet piping systems. A review will be undertaken of German and Japanese experience with
materials in “more conventional” intermediate heat exchanger units for gas-cooled reactors.

3.412 Hot Duct Liner and Insulations Test (Unfunded in FY-05)

Data on the performance of fibrous insulation are needed to ensure that the selected materials are
capable of lasting for the life of the plant. The data include physical properties (heat resistance, heat
conductivity, and heat capacity), long-term thermal and compositional stability, mechanical strength at
temperature, resistance to pressure drop, vibrations and acoustic loads, radiation resistance, corrosion
resistance to moisture and air-helium mixtures, stability to dust release and gas release, thermal creep, and
manufacturing tolerances and mounting characteristics. Acquisition of these data requires testing of
insulation specimens or small assemblies of thermal insulation panels and application of appropriate
ASTM standards. This standards development work will be supported within this program. Moreover,
application of current nondestructive evaluation techniques, especially in support of the monolithic
insulators, is included within this test plan. Specific test rigs and facility requirements include helium
flow, vibration, and acoustic test equipment as well as an irradiation facility and hot cell. The testing of
prototype assemblies will not include neutron irradiation.

3.4.13 Power Conversion Equipment (Turbine, Generator, Recuperator, etc.)
Materials Testing and Qualification (Unfunded in FY-05)

The design information needed to plan an R&D program in this area is insufficient at this time.
Also, it is expected that the industrial participants in the NGNP program will do work in this area, and the
DOE laboratories will address only selected topics in support of the industrial work.

3.4.14 \Valves, Bearings, and Seals Qualification Testing (Unfunded in FY-05)

The design information needed to plan an R&D program in this area is insufficient at this time.
Also, it is expected that the industrial participants in the NGNP program will do work in this area, and the
DOE laboratories will address only selected topics in support of the industrial work.

3.5 International Collaborations

The Gen IV International Forum (GIF) is the primary mechanism for international collaboration for
materials R&D activities in support of the VHTR. The GIF is an international effort to advance nuclear
energy to meet future energy needs of ten countries—Argentina, Brazil, Canada, France, Japan, the
Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United
States—and the European Union.

The primary mechanism for collaboration of materials R&D for the NGNP is through the GIF VHTR
Materials and Components Project Management Board (PMB). This board is currently composed of
members from France, Switzerland, Japan, Korea, South Africa, the United Kingdom, the United States,
and the European Union. It meets on a nominal quarterly basis in various locations in the world. The
board will be addressing each materials R&D program area noted in this document and will develop
detailed collaboration plans for each of these areas. The plans are being developed in about the same
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order of priority as noted in Section 3.4. It is currently envisioned that this process will not be fully
developed and implemented until the end of 2006; however, as each plan is developed, implementation of
collaboration activities will begin immediately. Currently, the collaboration plan for nuclear graphite
R&D is being developed and should be available by April 2005. This will allow further discussion and
development of this plan at the next Materials and Components PMB meeting at ORNL scheduled at that
time.

It is currently envisioned that collaboration will involve the establishment of coordinated test and
irradiation programs, coordinated purchase of testing materials, coordinated use of special testing
facilities, coordinated support for establishment of an integrated Generation IV materials database, and
coordinated support of codes and standards committees. It is expected that these collaboration activities
will result in a spirit of cooperation between the participating countries, the acceleration of design and
licensing activities of VHTR systems, and the reduction of the cost for the NGNP materials R&D.

3.6 NGNP Materials R&D Program Schedule Estimates

Figures 3-13 and 3-14 present the summary and detailed schedules for the NGNP materials R&D
over the next 10 years.
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4. NGNP DESIGN METHODS DEVELOPMENT & VALIDATION

This section outlines an ongoing, NGNP Design Methods Development & Validation Program and an
implementation strategy designed to govern the selection, validation, and use of the software analysis tools and
supporting input data required to calculate the behavior of the NGNP system during all normal and off-normal
scenarios. The software tools discussed here include those necessary to calculate the neutronic behavior, the
thermal-hydraulic behavior, the interactions between neutronics and thermal-hydraulics, and the structural
behavior where necessary. The fuel performance and fission product transport modeling efforts are discussed in
Section 2 of this document. The material in this section is based on the material in the document: Next
Generation Nuclear Plant — Design Methods Development and Validation research and Development Program
Plan [Schultz et al. 2004]. The NGNP Methods Program is designed to be interactive across the appropriate parts
of the DOE complex as well as with other university and industrial nuclear community stakeholders and will
include their feedback through a peer-review process.

Following selection of the NGNP pre-conceptual design concept, the design will undergo a series of three
evolutions (conceptual, preliminary, and final design). The NGNP Project software must be capable of analyzing
the NGNP design behavior for each of the latter three design stages. The plans outlined herein are designed to
achieve this objective.

The Design Methods Development and Validation R&D implementation methodology is shown in Figure 41.

1. NGNP Project Scenario Selection & Phenomena Identification: Phenomena
Identification & Ranking Table (PIRT) process used to select the scenarios and to identify
the phenomena of importance.

3 < 2. NGNP Project [«
. Validation Soft
Development by il V(:lli:iv:tl;f)n' — 4. Collaborations with GIF-Partners:
Community: Analvysis toé)l s are Use I-NERIs as medium for international
Validation evalu};t ed to @] relationships and collaboration projects to
performed by determine whether validate & develop software.
analysis community important
via international phenomena can be —¥| 5. Collaborations with Universities:
standard problems. calculated. Use NERIs as vehicle for R&D
& relationships with universities to focus on
pertinent NGNP R&D issues (validation &
development).

Tl

6. Development coordinated by NGNP Project: If
important phenomena cannot be calculated by analysis
tools, then further development is undertaken.

7. Analysis: The operational and accident scenarios that require study are analyzed.

8. Peer review: Nuclear community peer review of methods R&D process

Figure 4-1. Methods R&D process.
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The Design Methods Development and Validation R&D implementation methodology consists of eight
interacting activities:

1. Selection of the most challenging scenarios together with the dominant phenomena in each,

2. Internal validation of the software tools and data required to calculate the NGNP behavior in each
scenario,

3. External validation of the software tools via non-NGNP Project nuclear engineering community
participation in international standard problems,

4. R&D performed through GIF-member & NGNP Project collaborations centered in International Nuclear
Engineering Research Initiatives,

5. R&D performed through university & NGNP Project collaborations centered in Nuclear Engineering
Research Initiatives or GIF Project Management Board agreements,

6. Software development, when validation findings show that certain models are inadequate,

Analysis of the operational and accident scenarios, and finally,

8. Review of the global process, and the process ingredients, using experts outside the program.

~

The ultimate objective of this effort is to ensure the software tools and data used to analyze the desired NGNP
behavior in Activity 7 of Figure 4-1 are capable of meeting the NGNP analysis requirements to achieve the
necessary objectives. The analysis requirements are defined by identifying the important phenomena and
processes, using the Phenomena Identification & Ranking Tables (PIRT) process [Boyack et al 1990], for each of
the challenging scenarios that require analysis.

The analysis requirements can only be achieved by using a spectrum of software tools and associated data
libraries. The calculational process that satisfies the analysis requirements identified above is broken into seven
steps, as shown in Figure 4-2. The

seven steps are summarized in a. Material Cross b. Preparation of ¢. Whole-Core Analysis
paragraphs a through g below. Sectiop . Horr}ogenized Cross (Diffusion or .

. . . Compilation and »S Sections S Transport), Detailed
Figure 4-3 identifies the software Evaluation Heating Calculation,
currently associated with each of the and Safety Parameer
steps in Figure 4-2. #

a. Material cross section e. Models for Balance of d. Thermal-Hydraulic and

Tati Plant Electrical Thermal-Mechanical

comp lla_tlon and Generation System and [«@p> Evaluation of System
evaluation. Nuclear Hydrogen Production Behavior
interaction cross sections Plant
are among the most basic v
fundamental engineering g. Fission Product Transport |g— f. 1;‘:2‘;3::‘;‘2]2;::" Fission
data required for design,

licensing, and operation of

nuclear systems. Compared Figure 4-2. Calculation process.

to current light-water

reactors, any of the proposed NGNP configurations will feature a somewhat harder neutron spectrum, a
more complex fuel form, and two to three times greater burnup. Studies show that there is a near-term
need for improved cross section measurements in certain neutron energy ranges for some isotopes to
support the extensive computational modeling that will be required for the NGNP design, regardless of
the specific basic reactor configuration that is ultimately selected. The isotopes **’Pu, **'Pu, and ***Pu
are particularly important at high burnup. Improved cross section data are ultimately incorporated into
the Evaluated Nuclear Data Files (ENDF) maintained by the US National Nuclear Data Center. These
data are subsequently processed to produce input libraries useful in reactor analysis software.
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Figure 4-3. Application of process to block-type and pebble-bed candidate designs
for NGNP—uwith applicable software.

b. Preparation of homogenized cross-sections. Before it can be used for a specific reactor application, the
ENDF data, as processed into a general format by NJOY or a similar tool, must be further processed into
a case-specific form using local cell and assembly modeling codes. The basic physical data are
processed for case-specific resonance shielding and then weighted with characteristic energy and spatial
flux profiles generated from unit cell or super-cell models. This step is performed using software that
approximates the neutron transport equation using Py or By transport codes for the energy flux
calculation and a one- or two-dimensional transport code for the spatial flux. [In the advanced lattice
codes, spatial resolution is typically done using integral transport methods (collision probability or
method of characteristics approaches.)] Software that will be initially evaluated for this function
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includes COMBINE, BONAMI/NITAWL, MICROX-2, WIMS-8, HELIOS, and DRAGON. An
appropriate suite of codes will be implemented and validated according to accepted standards. The
geometric aspects of this process are significantly different in the prismatic and pebble-bed concepts, so
two computational paths are shown in Figure 4-3. For additional assurance that the computational results
obtained using diffusion theory codes are accurate, higher order deterministic transport methods should
be employed to perform selective benchmark checks. Representative software that might serve this
function is ATTILA, TWODANT, THREEDANT, or DORT/TORT. These transport packages are also
used as part of the assembly cross-section preparation process.

Whole-core analysis (diffusion or transport), detailed heating calculations, and safety parameter
determination. Nodal diffusion-theory codes, such as DIF3D and an INL-developed code, PEBBED,
which is designed specifically for pebble-bed reactor simulation, will be the centerpiece production
codes to perform NGNP reactor core analysis. Steady-state eigenvalues, energy and spatial flux profiles,
reaction rates, reactivity changes (burnup and control rod movement), etc., will be calculated with the
nodal diffusion-theory codes. Multi-group cross section data generated in the reactor assembly cross
section preparation step (Step b above) will be provided to the nodal diffusion code. The DIF3D code
also contains a nodal transport option (VARIANT) based on the variational transport approach. To
consider the power behavior as a function of fuel depletion, additional capabilities are required. This
function is usually performed by the REBUS code in conjunction with DIF3D, whereas it is internal to
the PEBBED code for the pebble bed reactor case. All of these software packages will be verified
against alternate computational models, especially models based on the well known MCNP stochastic
simulation (Monte Carlo) code as shown in the center of Figure 4-3, and various deterministic
approaches. In addition, all of the reactor physics models will be validated against various suitable
experimental benchmarks. A preliminary assessment of appropriate validation benchmarks pertinent to
the current gas-cooled NGNP reactor concepts has in fact been completed by INL and ANL and more
detailed benchmark evaluations are now underway. Output from the nodal diffusion codes will not only
provide the steady-state operational physics parameters for each operational analysis conducted, but it
will also be used as the initial condition for reactor kinetics calculations required as part of the overall
system analyses performed in Steps d and e below. Spatial changes in flux and power level as functions
of time during postulated transients, predicted by the kinetics module, will provide the energy source
term required for the overall thermal-hydraulics systems code computations at each time step during each
transient. This process permits full coupling of thermal and neutronics computations, consistent with
modern practice for nuclear systems analysis. The NESTLE code, a subroutine in the RELAP5-3D
systems analysis thermal-hydraulics code, will serve this purpose for the prismatic reactor concept, and a
time-dependent implementation of the PEBBED code will be used for the pebble-bed concept.

Thermal-hydraulic and thermal-mechanical evaluations of system behavior. The fluid behavior, and
interactions with the neutronics, will be calculated using a systems analysis code, or perhaps a coupled
systems analysis/computational fluid dynamics (CFD) code. Examples of two systems analysis codes
and a CFD code are RELAPS5-3D, GRSAC, and Fluent. In such a coupling, systems analysis software is
used to perform calculations of the overall system behavior considering the interactions between all the
parts, e.g., the core, the plenums, the hot exit duct, the turbine, and the remainder of the plant. CFD
codes, such as Fluent, are used to calculate the detailed three-dimensional fluid behavior in a region of
the reactor such as a plenum. In some cases, where one code has been validated extensively, it can be
used for limited validation of a second code. An example of this is shown in Figure 4-3 where GRSAC
may be used to partially validate RELAP5-3D. In addition to analyzing the fluid behavior under a
spectrum of operating and accident conditions, the thermal-hydraulic tools also will be used to
investigate the significance of material geometric tolerance variations due to manufacturing, thermal
responses, and irradiation effects such as graphite swelling. The need to examine factors that affect
thermal-mechanical influence on fluid and heat transfer behavior will be included in the tool selection
and evaluation process.
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e. Models for balance of plant electrical generation system and hydrogen production plant. The behavior
of the balance-of-plant systems will be modeled using a systems analysis code such as RELAP5-3D or
Aspen. The balance-of-plant models are important to include in the analysis process to account for the
important interactions that affect the system efficiency during normal operational conditions, but also to
account for the equipment interactions that may lead to undesirable conditions such as turbine over-
speed, loss of net positive suction head for auxiliary systems, or oscillatory conditions that may lead to
equipment damage. Interactions between the reactor system and its balance-of-plant components lead to
boundary conditions that will determine whether fuel-damaging conditions are likely (see item f).

f. Fuel behavior and fission product release. The performance of fuel particles under irradiation is
modeled to determine whether fuel failure will occur, with the subsequent release of fission products,
and whether subsequent migration of fission products throughout the system must be considered. The
INL software designed to perform this function is called PARFUME. In addition to the physical
description of the fuel, an operation history generated by physics and thermal analysis codes (consisting
of fuel temperature, burnup and fast neutron fluence) is used as input to PARFUME. The code models
the mechanical and physico-chemical behavior of the fuel and calculates the fraction of the fuel particle
inventory that may fail. Several potential failure mechanisms are analyzed, including cracking of
structural particle layers, debonding of the inner pyrolytic carbon layer from the silicon carbide (SiC)
layer, buildup of internal fission gas pressure, kernel migration (amoeba effect) to the SiC layer, and
thinning of the SiC layer by fission product interactions. PARFUME also calculates the fraction of
selected fission product gases released from failed particles and from fission of uranium contamination in
the matrix material surrounding the fuel particles. Calculation of the release of selected metallic fission
products is currently under development. The fuel and fission product modeling activities are described
in Section 2 of this document.

g. Fission product transport. If a loss-of-coolant accident has occurred, such that the fission products may
migrate or be impelled into the confinement/containment building with perhaps subsequent release to the
environment, then the final calculational step is the prediction of the fission product movement into the
environment and its environmental distribution. Software tools that may be used for this purpose include
MELCOR, RELAP5-3D/SCDAP in conjunction with VICTORIA, and perhaps a CFD code with an
appropriate user defined function.

The process described in items “a” through “g” is shown in the flow chart of Figure 4-2. The complete
calculation process illustrated in Figure 4-2 is only exercised in its entirety for a few scenarios. Most scenarios
would require the use of only a fraction of the calculations represented in Stages a through e. For example,
scenarios that do not include a loss of coolant, i.e., a pipe break, usually would not require calculation of fission
gas transport (Stage g). In addition, if the neutronics has been thoroughly calculated for the reactor system
operating condition (Stages a through c), then a multitude of reactor system calculations can be performed using
the evaluated reactor power state at time zero, and hence the Stage a through c calculations may only need to be
performed once for a desired operating condition. Thereafter, for such scenarios that assume reactor scram
(requiring no reactor kinetics), a multitude of calculations can be performed using only the software tools
developed for Stages d and e.

A rigorous PIRT analysis of the NGNP has not been performed since the design has not yet been identified.
However, based on the accumulated knowledge of the advanced gas-cooled reactor vendor community, a “first-
cut” PIRT has been defined and used to specify the FY-05 R&D and also to formulate the fundamental R&D
progression for subsequent years. Once the design is specified, the design methods development and validation
R&D requirements will be aligned with the design.

The “first-cut” PIRT used to specify the FY-05 R&D and to formulate the fundamental R&D progression for
subsequent years is shown in Table 4-1. The following discussion briefly outlines R&D needs, as listed in Table
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4-1, for normal operational conditions as well as for accident conditions that are anticipated to be most
challenging in that they place the greatest requirements and limits on system design and operation such as the
depressurized conduction cooldown (DCC) and pressurized conduction cooldown (PCC) scenarios. The
following phenomena have been determined to be important: neutronics behavior, core hot channel
characterization, bypass analysis, mixing, laminar-turbulent transition flow and forced-natural mixed convection
flow, air-water ingress, and fission product transport.

Table 4-1. “First-Cut” PIRT for normal operation, PCC and DCC scenarios.

Scenario Inlet Core RCCS Outlet
Plenum Plenum

Normal i. Neutronic behavior i. Mixing
operation ii. Bypass flow

iii. Hot channel characteristics
DCC i. Thermal radiation and conduction of i. Laminar-turbulent

heat across the core transition flow

ii. Axial heat conduction and radiation ii. Forced-natural mixed

iii. Natural circulation in the reactor convection flow

pressure vessel
iv. Air & water ingress
v. Potential fission product transport

PCC Mixing i. Neutronic behavior i. Laminar-turbulent i. Mixing
ii. Bypass transition flow
iii. Laminar-turbulent transition flow ii. Forced-natural mixed
iv. Forced-natural mixed convection convection flow
flow

v. Hot channel characteristics at
operational conditions

Neutronic behavior. As noted previously, the current NGNP design candidates have somewhat different
neutronic properties than standard light-water reactors, specifically, a higher thermal flux component with the
peak shifted to higher energy, a more complex fuel geometry, and a fuel cycle with two to three times the burnup.
Some of the global reactor physics issues associated with the current VHTR core designs include:

»  Strong thermal flux and power peaking at the reflectors, especially the inner reflector,
*  Proper accountability for double heterogeneity of the fuel,
*  Complexity of the 3-dimensional core depletion and reload analyses, and

*  Accurate coupled thermal-hydraulic/neutronics/thermo-mechanical kinetics with appropriate representation
of irradiation effects.

Furthermore, there are some additional, more fundamental physics issues. At the very high burnups expected
for the NGNP, the higher isotopes of plutonium contribute a significant amount of fission energy and resonance
capture, both of which affect the basic operating characteristics. Yet it is generally acknowledged that the
necessary cross-section information for these isotopes requires improvement. In addition to improvements in the
cross-section data to increase the accuracy of the neutronics calculations, improvements in cross-section
processing methods are needed in the treatment of resonances in the thermal energy range in graphite-moderated
reactors where up scattering is significant. The inability to account properly for this effect could lead to
substantial errors in the harder spectrum of a graphite-moderated reactor. The double heterogeneity noted above
is another fundamental physics aspect requiring attention. The two scales of heterogeneity involved here are the
fine scale, associated with the fuel particles, and the coarse scale, which must properly model the fuel-pebbles or
fuel-compacts. The improvement in cross section generation will require valid treatment of resonance
interactions.
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Core hot channel characterization. The characteristics of the hottest cooling channels at operational
conditions are considered a key calculational need since the hot channel temperature distribution defines the
hottest initial condition for the fuel and surrounding materials. Hence preliminary computational fluid dynamics
(CFD) studies have been initiated and validation data are sought.

Bypass. The bypass flow passes through the reflector regions in both pebble-bed and block reactors and, in a
block-type reactor, between the blocks. Because the quantity of bypass flow is a direct function of the bypass
area, which in turn is a function of the temperature distribution, fluence, and graphite properties, the influence of
the bypass on the core temperature distribution may be significant.

The influence of bypass may be assessed in part by performing a series of parametric calculations that differ
in the geometric boundary conditions—as defined by the various factors that influence the bypass flow passages
such as manufacturing tolerances, misalignments, and geometric distortions.

Mixing. Mixing refers to the degree to which coolant of differing temperatures entering a region mixes to
produce a uniform temperature. Mixing is a three-dimensional phenomenon in the inlet and outlet plenums and a
function of a number of variables. In the inlet plenum, where it is identified as important in the PCC scenario,
mixing occurs during natural convection as helium moves upward through the hottest portion of the core while
cooler helium moves downward through the bypass and the cooler regions of the core. In the outlet plenum,
mixing occurs between the bottom of the core and the turbine or immediate heat exchanger inlet during normal
operation. A preliminary calculation of the temperature variation in the lower plenum indicates that gas
temperature variations could exceed 300 °C. Although the specification for temperature variation at the
immediate heat exchanger or turbine inlet has not been set, it is thought that the helium temperature variation
must be less than £20 °C. Also, it has been seen that helium has a surprising resistance to thorough mixing [Ball
2004, based on experience of Kunitoni et al. 1986] and that the temperature in the core outlet jet can vary over a
considerable range, particularly since the bypass flow may vary between 10% and 25%. Therefore, it is likely
that special design features will be required to ensure good mixing and minimal thermal streaking from the lower
plenum to the turbine inlet.

Laminar-Turbulent Transition Flow &. Forced-Natural Mixed Convection Flow. During the PCC
scenario in the core region and during both the PCC and DCC scenarios in the reactor cavity cooling system
(RCCS), there is the potential for having convective cooling in the transition region. Because the convective
cooling contribution is an important ingredient in describing the total heat transfer from the core and thus the
ultimate peak core and vessel temperatures, these heat transfer phenomena are potentially important.

Air & Water Ingress. For loss-of-coolant scenarios, such as the DCC, there is the potential for air and water
ingress into the core in perhaps harmful quantities—depending on the scenario assumptions. Air may be present
in the reactor cavity (some designs have a cavity filled with inert gas) and may enter the core by diffusion in a
DCC accident. Water is normally present in the air in the form of humidity, but it may enter the core in much
greater quantities, with much greater potential effect on reactivity, if the shutdown cooling system suffers a pipe
leak or break. Oxidation of graphite in the prismatic core design is also a potential safety issue.

Fission Product Transport. Fission product transport must be calculated for cases where some fraction of
the TRISO fuel particles fail prior to or in conjunction with the DCC scenario and because certain fission products
such as silver and palladium may diffuse through the TRISO coatings. Dust that will likely contain fission
products must also be tracked and accounted for using state-of-the-art calculational tools, particularly for the
pebble-bed reactor.

The remainder of this chapter describes the Methods Development and Validation R&D is four basic areas:
(1) Nuclear data measurements, integral evaluations, and sensitivity studies, (2) Reactor kinetics and neutronics
analysis development, (3) Thermal-hydraulics and (4) methods development and analyses of the molten salt
cooled NGNP.
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4.1 Nuclear Data Measurements, Integral Evaluations,
and Sensitivity Studies

Accurate differential nuclear data libraries and well characterized and accurate integral benchmark
information is required for all computational reactor physics tasks associated with NGNP design and operation.
Differential nuclear cross section data for all materials used in the reactor are required as input to the physics
codes. Furthermore, integral benchmark experiment data for relevant existing critical configurations are required
for physics code validation. Finally, rigorous sensitivity studies for representative NGNP core designs are
required for prioritizing data needs and for guiding new experimental work in both the differential and integral
regimes. The following sections describe the near- and long-term needs and planned activities in these three
areas.

411 Sensitivity Studies

A study will be conducted early in the NGNP R&D effort to quantify uncertainties in computed core physics
parameters that result from propagation of uncertainties in the underlying nuclear data used in the various
modeling codes. ANL has developed expertise in this area and will have the lead in this effort, which will serve
as an aid in further quantifying the need for additional cross-section measurements and/or evaluations for NGNP
and as a guide in planning of future measurements and evaluations. INL will collaborate with ANL in the effort
at a level that will increase over time during the first three years. The required evaluations will be accomplished
by performing formal sensitivity and uncertainty analysis in order to identify the nuclides that contribute to
calculational uncertainties and to quantify the propagated uncertainties in the context of the currently anticipated
NGNP core designs. The NGNP gas-cooled prismatic core design will be the basis for this initial study
[MacDonald et al. 2003]. Subsequent studies will encompass the other candidate concepts. Sensitivity
coefficients will be calculated by generalized perturbation theory codes and folded with multi-group covariance
data to derive propagated uncertainties in computed integral reactor parameters arising from the nuclear data.
Key integral parameters to be evaluated include reactivity, peak power, reaction rate ratios, nuclide inventory,
feedback coefficients, etc. The impact of cross section data uncertainty on the accuracy of each parameter will be
evaluated, along with the identification of nuclides, cross section types, and energy ranges that have greatest
impacts on accuracy of integral parameters. Most of the effort will be conducted during the first three years, FY-
05 through FY-07, although the required computational capabilities will be maintained by ANL and INL over the
life of the overall NGNP project for use as needed to address additional issues that will undoubtedly surface from
time to time.

41.2 Integral Neutronic Parameter Evaluations and Assessment of Needs for New
Measurements

The computer codes used in NGNP design and safety analyses must be able to model the NGNP
configuration accurately. Therefore, these codes must be benchmarked against appropriate experimental data.
Various experimental data on the physics of high-temperature gas-cooled reactors (HTGRs) have been measured
internationally since the early 1960s. During FY-04, under DOE Generation IV crosscut funding, the INL and
ANL studied all the known experimental and prototypical HTGRs and relevant critical facilities in order to assess
their potential to be used as benchmarks. For the pebble-bed NGNP concept, the ASTRA, AVR, CESAR II,
GROG, HTR-10, HTR-PROTEUS, KAHTER, SAR, and THTR facilities were assessed. For the prismatic
NGNP concept, DRAGON, Fort St. Vrain, Gulf General Atomic (GGA) criticals, HITREX-1, HTLTR, HTTR,
MARIUS 1V, the Peach Bottom Reactor and criticals, SHE, U.K. NESTOR and HECTOR lattices, and VHTRC
were assessed.
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As a result of the assessment, the HTR-10 (Figure 4-4) was chosen as the most promising facility for the first
pebble bed reactor benchmark that will undergo full evaluation, and HTTR and VHTRC were chosen as the most
promising facilities for the first block-reactor benchmarks. Recent
NGNP program strategic developments have also resulted in the
need for an additional assessment exercise to include any available
molten salt cooled concepts that may be suitable as benchmarks.
Current plans are to conduct this assessment, as a collaborative effort
of INL, ANL, and ORNL in FY-06 or FY-07.

The next steps in connection with the assessment study that has
been completed for the gas-cooled concepts will involve detailed
evaluation and documentation of the identified facilities to provide
benchmark specifications accepted by the community and regulators
for validation of physics modeling codes. The work will be
conducted under the International Reactor Physics Evaluation Project
(IRPhEP), an international effort endorsed by the Organization of
Economic Cooperation and Development (OECD) Nuclear Energy i
Agency (NEA) Nuclear Science Committee (NSC) in June of 2003. ix
The INL and ANL will contribute NGNP-specific benchmarks
evaluated under this R&D Plan. Data contributed to the IRPhEP will 1
be published in an OECD Handbook to be made available to all 3 \
participating countries. Because of the rigorous quality standards in
the evaluation process, published IRPhEP benchmarks will have the
highest level of international credibility and acceptance.

—
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The INL provides leadership for the IRPhEP Technical Review
Group that was organized during FY-2004 / FY-2005, maintains the
infrastructure of the IRPhEP, and is responsible for compiling and
distributing its annual publications. Through this effort, the IRPhEP
will be able to (1) consolidate and preserve the information base that
already exists worldwide, (2) retrieve data that is not readily
available, (3) identify areas where more data are needed, (4) draw
upon the resources of the international reactor physics community to help fill those needs, (5) identify
discrepancies between calculations and experiments caused by deficiencies in cross section data, cross section
processing codes, and neutronics codes, (6) eliminate a large portion of the tedious and redundant research and
processing of reactor physics experiment data, and (7) improve experimental planning, execution and reporting.

Figure 4-4. Schematic diagram of
HTR-10 core and vessel.

The formal benchmark evaluation process is quite rigorous and includes very specific steps. Each draft
experiment evaluation undergoes thorough internal review by the evaluator's organization. In addition, each
experiment undergoes independent peer review by another IRPhEP Technical Review Group member at a
different facility. Starting with the evaluator's submittal in the appropriate format, independent peer reviewers
verify (i) that the benchmark specification can be derived from the descriptive information given in the
evaluation, (ii) the completeness of the benchmark specification, (iii) the results and conclusions, and (iv)
adherence to format. A third review by the assembled IRPhEP Technical Review Group then verifies that the
benchmark specification and conclusions are adequately supported.

The NGNP integral evaluation activities conducted by the INL under this Plan will be coordinated with the
ongoing Generation IV Design and Evaluation Methods Crosscut program to avoid duplication of effort and to
maximize funding leverage. There will also be a high degree of international coordination due to the inherent
organizational nature of the IRPhEP. For example, the ASTRA facility in Russia is being evaluated by the South
African pebble bed reactor development group and their international collaborators. In the first year of this effort,
the INL will evaluate the HTR-10 and possibly PROTEUS. ANL will evaluate either HTTR or VHTRC. Other
appropriate benchmarks will be evaluated in later stages of the overall integral benchmark effort encompassed by
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this Plan. It is anticipated that evaluations for most, if not all of the higher priority NGNP-specific gas-cooled
facilities identified in the assessment will be completed during the first five years, FY-2005 through FY-2009.
Additional evaluations will continue in the later years as specific needs are identified, for example in the case of
the molten salt cooled concept if that concept becomes of interest to the industrial partners in the NGNP program.

Where additional experimental measurements are required, attempts will be made to make use of existing
facilities worldwide. Conclusions will be made concerning adequacy of available measurements and facilities and
will be used as a basis for recommendations relative to the need for new measurements and/or facilities.

41.3 Differential Nuclear Data Assessment and Measurement.

Studies already conducted by INL and others as a part of the NGNP, Generation IV and Advanced Fuel
Cycle Initiative (AFCI) programs show that the transuranic nuclides, for which useful cross section data are
extremely limited in many cases, will significantly affect the neutronic behavior of some advanced nuclear energy
systems of interest. Databases from some key nuclide integral experiment studies [e.g., Mercatali et al. 2004]
confirm the sensitivity of computed parameters for minor actinides dominated fast-spectrum system to
uncertainties in the cross sections of many of these materials. For the NGNP, the current design will feature a
somewhat harder thermal neutron spectrum than is usually found in standard light-water reactors as well as two to
three times the burnup of a light water reactor. As a result, improved cross section data might be required in
certain neutron energy ranges for some isotopes, in particular ***Pu, **'Pu, and **’Pu. A joint Gen IV/AFCI
working group on reactor physics and related nuclear data assessment and improvement needs has been formed to
coordinate and prioritize nuclear data activities.

Figure 4-5a shows a plot of the ENDF/B-VI data file values for the **’Pu fission cross-section, the black solid
line. Also plotted on 4-5a are the available published direct (differential) measurements over broad energy ranges
in the same experiment, shown by the colored vertical lines, with the length of the line as an indicator of the
reported uncertainty of the data. Experimental data below ~10 eV are limited to single-point experiments that
may not have been done under the same conditions, as discussed later. Thus, in several energy ranges of interest,
the ENDF values are heavily based on theoretical models with limited experimental data input, and can be
uncertain.
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Figure 4-5. ENDF/B-VI data file values (black solid line) and available experimental data sets for the
240py fission & capture cross sections.
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It should also be noted that even where data are available the reported uncertainties are high. Figure 4-5b
shows the capture cross section for *’Pu. In this case the experimental data are even more limited and no
uncertainties were reported. This capture cross section is particularly important because neutron capture in **’Pu
leads to **'Pu, which has large (but also uncertain and in fact difficult to measure) fission and capture cross
sections. Recent computations performed at INL show that for a reference prismatic NGNP fuel design, an
uncertainty of as little as 10% in this cross section can lead to uncertainties in system reactivity of as much as 500
pem absolute reactivity because of the propagated uncertainty in the **'Pu buildup. Initial sensitivity studies
conducted early in FY-2005 by ANL in connection with this R&D plan confirm the general direction of this result
and indicate that propagation of the estimated uncertainty associated with the **’Pu capture cross section,
especially in the low-energy resonance region, is in fact even larger, by perhaps as much as a factor of two, and
likely is the most significant contributor to the overall uncertainty of integral reactivity parameters computed for
the end of cycle condition. Furthermore, earlier integral-experiment-based code validation studies performed by
INL [Sterbentz 2002, Sterbentz & Wemple 1996] for low-enriched fuel with thermal or slightly hyperthermal
neutron spectra representative of typical NGNP designs show that computations of the inventories of the
plutonium isotopes of interest here (**’Pu, **'Pu, and ***Pu) can vary by as much as 30% from corresponding
measurements, at burnups of less than one-third of what is contemplated in a baseline NGNP scenario. Once
again such discrepancies can propagate with significant effects on the uncertainty of computed safety-related
reactor parameters such as reactivity, Doppler feedback, etc.

A comprehensive standard database, CINDA (Computer Index of Neutron Data), maintained by the National
Nuclear Data Program at Brookhaven, was used as the source for experimental data files and references for **Pu
shown in Figure 4-5. In a search of CINDA, 1450 references and data files were found. In these, only one direct
measurement of the neutron capture cross section over an extended energy range under self-consistent conditions
was found. All other capture cross section information was extracted from ratio measurements relative to other
nuclides, based on calculational extractions from total neutron induced reactions on a **°Pu sample, or composed
of single-point measurements at one energy or averaged over an energy range to yield a single value. The vast
majority of the single-point values were at "thermal" energies, or were integral values.

Thus the roughly 50,000 points in the ENDF data file for the ***Pu capture cross section are the result of one
or more nuclear model calculations with what appears to be very limited experimental data as input. There are 18
experimental data files (i.e., there are 18 experimental references in the 1450 CINDA references that represent
any experimental measurement), with only one file containing a direct measurement with experimental results
over an energy range. The 17 other experimental data files used in compiling the ENDF file are total cross
section measurements, ratio measurements, or single-point measurements. As another example, there are 810
references in the CINDA database for the **’Pu fission cross section. Of these, 40 references have experimental
data of some form that are used to construct the ENDF evaluated file containing 50546 data points. The four
plotted experimental data files represent the only direct, multipoint measurements of the cross section out of the
40 references containing experimental cross section values. The other 36 references of experimental data sets are
ratio measurements, single-point measurements, or average values over several broader energy ranges. The
single-point values are Maxwellian distributions about some central energy values, generally 0.025 eV. The 810
#9py fission cross section references in CINDA also contain experimental data on other parameters associated
with fission as well as evaluations, theoretical papers, reports, and other works that do not contain direct data.

The situation for ***Pu is similar to what was described above for **’Pu (although studies do consistently
show that the propagation of uncertainty in the case of this isotope is significantly smaller in the NGNP context
than for **’Pu). The experimental effort devoted to **U and **’Pu over the past 50 years has simply not been put
into measurements for other actinide isotopes. There is thus also a potential need for new data for essentially all
of the approximately 16 heavy actinides that will come into play with the even more advanced Generation [V
systems and fuel cycles under study. However, the emphasis in this discussion, specific to the NGNP, is on the
plutonium isotopes.

In this portion of the planned NGNP R&D program, the INL, in partnership with ANL and various university
and international collaborators, will conduct a research program of measurements for actinides of interest at the
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ANL Intense Pulsed Neutron Source (IPNS). The IPNS facility is one of the few accelerator-based neutron
sources in the world where it is possible to do relevant neutron-induced measurements. Over the past several
years, the INL Nuclear Physics Group has installed the array of detectors shown in Figure 4-6 at IPNS, has
implemented the supporting electronics and a data acquisition system based on coincidence techniques developed
over the last two decades in nuclear physics, and
has been using this array for the study of
fundamental aspects of the nuclear fission process.
The overall INEEL effort in this area, which
includes work at several facilities, has produced
over 100 refereed journal papers over the years,
and it has established an international
collaboration to support the experimental effort
through data analysis. In the past year INL has
undertaken an effort to upgrade the system in a
manner that will allow measurement of absolute
nuclear cross sections as well, specifically to
support this proposal. The proposed program will
be coordinated with, and will complement, related
efforts elsewhere, especially the nuclear data
measurements under way at the Los Alamos
Neutron Science Center (LANSCE) under the

AFCI program as well as related efforts in Europe.  Figure 4-6. INEEL Detector array at ANL/IPNS.

In the first five years, FY-05 through FY-09,
the differential data measurement campaign will be focused on development of data for ***Pu and ***Pu, especially
in the lower parts of the resonance energy range where the IPNS facility offers good energy resolution coupled
with the desirable features of the coincidence based measurement and data analysis techniques that are employed.
These advantages include background reduction, model-independence for some interactions, separation of
competing interactions, etc. Although the technique offers the greatest advantages for high precision fission
measurements (cross section and fission product yield), data for all observable interactions are taken
simultaneously. Capture and inelastic scatter interactions may also be determined with the aid of detailed nuclear
structure information for the target isotope. This information is quite limited and difficult to obtain in many
cases. However, the coincidence methods offer an approach for determining some of the necessary nuclear
structure information as an inherent part of part of the overall measurement process itself. Although capture and
inelastic measurements with the IPNS approach are not model-independent and the attainable absolute precision
of such measurements is likely to be less than is the case for fission, the relative event spectrum data for these
interactions, which will be of greater precision than absolute measurements, is of significant value in and of itself.
This is because the energy-dependent relative cross section information can be normalized to single point cross
section measurements from other experiments to provide a more complete picture of the situation than could be
obtained by either type of measurement alone.

The ***Pu and ***Pu measurements will be followed by measurements for **'Pu, assuming that the priorities
that are currently recognized by the various nuclear data working groups remain unchanged. After this initial
campaign is complete and the data published for inclusion in the ENDF evaluations, attention will turn to the
higher actinides with specific priorities set, once again, by the cognizant international nuclear data working
groups.

Plans have been made to acquire targets of the needed isotopes from the Federal State Unitary Enterprise
State Scientific Center of the Russian Federation Research Institute of Atomic Reactors in Dimitrovgrad, Russia.
This is an important aspect of the proposed work, since isotopically pure metallic forms of the targets are not
readily available in the United States, although the INL does have a capability for fabrication of some limited
types of targets and this expertise will be used where appropriate. It is also important to recognize that a
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collaboration of university and national laboratory scientists in both the US and Russia exists to analyze and
publish the results, once again allowing leveraging of resources.

It should also be noted in closing that the prospective INL/ANL program for nuclear data measurements at
IPNS underwent an international scientific peer review in September 2004. As a result of this review, there will
be a much stronger emphasis in the first 18-24 months on careful calibration of the instrumentation and proof of
principal testing of the experimental protocol using *’Pu standards. This will be followed by measurements for
*py with a focus on the low-lying resonances. Furthermore there will also be additional attention over the longer
term to improvement of certain design details of the time of flight beam monitor as well as to various experiment
design and protocol improvements required to reduce systematic uncertainty in the overall experimental results.
These latter efforts will include, 1) additional attention to corrections for neutron scattering in the sample targets
as well as corrections for other detector artifacts that can be addressed by careful modeling and, 2) continuous
online monitoring of the system over the long run times needed in order to ensure self-consistency of the final
data sets. The measurements will be done for the "overlap" between the measurement priorities that the
sensitivity studies discussed in Section 4.1.1 above are defining and the specific capabilities of the measurement
technique. A joint AFCI-Generation IV physics group has been formed by DOE-NE and it will be the appropriate
forum to discuss and determine this overlap.

4.2 Reactor Kinetics and Neutronics Analysis Development

The design and operational analyses of the NGNP requires the ability to carry out the following reactor
physics computations: (1) cross section preparation and fuel assembly spectrum calculations to produce effective
nuclear parameters for subsequent global reactor analysis, (2) static reactor analysis for core design and fuel
management, (3) reactor kinetics and safety analysis (4) material-neutronics interface, (5) validation and
verification. This section of the overall methods development plan focuses on the development of a suite of
deterministic code systems, including spectrum codes, a lattice physics code, and nodal diffusion codes, that can
be used for efficient and accurate design of the NGNP. In order to accomplish the project goal efficiently,
existing codes will be used as the basis of the new code suite with the addition of required functionalities for
VHTR applications. For applications to global reactor analysis, ANL has selected the DIF3D/REBUS-3 code,
which has been successfully used for the reactor physics analyses of fast reactors [Toppel 1990]. The INL is
developing the PEBBED code specifically for the global analysis of pebble-bed reactors with circulating fuel
[Terry 2002]. Although these codes provide the starting point of this project, a significant amount of development
is required to enhance their capabilities. Furthermore it is necessary to equip a group-constant generation system
that properly incorporates all of the physics of the two basic NGNP concepts, pebble-bed and prismatic (gas or
molten salt cooled). Many of the issues to be addressed in this effort are common to both concepts, yet there are
distinguishing features that require parallel developments. However, it may be noted that the analytical tools that
work for a prismatic reactor cooled by helium are generally adequate for one cooled by molten salt.

General considerations. Enhancements and improvements in modeling capability are thus needed to address
unresolved issues in pebble bed and prismatic high-temperature graphite-moderated reactor physics. One of the
most important of these issues is the proper preparation of nuclear cross-section libraries suitable for use in the
analysis of in graphite-moderated, helium-cooled reactors. As explained in the specific task descriptions below,
existing cross-section preparation methods for graphite-moderated reactors will yield poor agreement with
continuous-energy Monte Carlo calculations in the thermal and hyperthermal energy range if the double-
heterogeneity of the fuel form and assembly leakage are not carefully addressed. Improved treatments are needed
since the basic reactor operating parameters are highly sensitive to any inaccuracies in the effective cross sections
in this energy range.

Another major development area is in core simulation; i.e. enhancing PEBBED and DIF3D to provide
lifecycle analyses using modern methods. For the prismatic designs (cooled by either helium or molten salt), the
DIF3D/REBUS-3 code developed at ANL provides much of the capability required of a core simulator, although
it needs additional development (e.g., thermal feedback and de-homogenization models for these reactors).
Modern core design and optimization techniques that are used widely in LWR fuel management would have to be
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applied to DIF3D/REBUS-3 given the largely unexplored parametric space of NGNP fuel and the potential
impact on economics of the reactor. For the pebble-bed reactor, the PEBBED code developed at the INL is the
only core simulator that models pebble flow and is available to the DOE complex. It possesses an advanced
optimization capability but currently lacks the ability to model some distinguishing features of the pebble bed
reactor.

A third issue is the modeling of the power deposition. The proper accounting for production and transport of
gamma photons should be included as part of the analysis code suites. The power deposition distribution can
differ significantly from the fission rate distribution due to the transport of gammas away from their creation sites.

A fourth issue is the extension of the material damage method to high temperatures (for both prismatic and
pebble-bed designs). Current material damage modeling techniques assume very low (0 K) material temperatures
that have not been shown to be valid at higher temperatures. Furthermore, the effects of high-temperature
annealing (during either normal operation or accident conditions) must be characterized as part of the safety case.

The work described herein begins the process of completing the suite of analysis methods to permit the full
scope of NGNP design analysis calculations to be performed with state-of-the-art tools. An integral part of the
development and testing of the new capabilities will be the assessment of their implications for NGNP design
limits. The INL and ANL will be leading the research efforts for these tasks and are cooperating on the
identification and development of a code suite that incorporates the techniques required for accurate analyses of
all current candidate NGNP concepts. These labs have already established working relationships with a number
of universities and international organizations that have an interest in gas reactors. A number of workshops and
electronic information exchanges have taken place and more are planned as the overall NGNP project proceeds.
It is anticipated that the bulk of the code development effort will be completed in the first five to six years of the
overall effort. After that, code maintenance, validation, and application to the ongoing NGNP design effort will
continue for the duration of the project.

Special considerations for pebble-bed reactors. Until recently, design analysis methods for pebble-bed
reactors have been several generations behind the state of the art for light-water reactor design and analysis. For
the past five years, the INL has been engaged in the development of analysis methods for high temperature gas
reactors, with a special emphasis on the pebble bed reactor. The laboratory has developed the PEBBED code for
reactor physics and fuel cycle analysis and the PARFUME code for fuel materials analysis [Miller et al. 2002]. A
sample PEBBED graphical neutron flux output is shown in Figure 4-7. In addition, the INL has developed a
method for quantifying material damage in graphite and silicon carbide reactor materials. The availability of
these tools has made possible innovations and discoveries that could not have been achieved without them. For
example, the INL determined the reason for the
success of the German TRISO fuel particles and the
failure of other countries’ fuel [Petti et al. 2003]. 49 Flux (10" n/em?-s)

Using a genetic algorithm developed to work in 3
conjunction with PEBBED, the INL optimized design
parameters to achieve a passively safe pebble bed

reactor design of 600 MWt, a goal that had not !

previously been attained [Gougar et al. 2004]. Using 15D e

PEBBED, the INL was also able to propose design 1om 300
enhancements to the pebble bed reactor that increased axial (em) oo

safety during a potential water ingress accident and oo Radial Distance (cm)

improved fuel economy and utilization [Gougar et al.
2003]. All these significant design improvements
were attained as incidental results of the verification
of the new methods and the testing of their capabilities
and the resulting extension of the design limits that
can be reached.

Figure 4-7. Thermal neutron flux profile in the
NGNP 600 MWt reactor calculated by PEBBED.
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One of the licensing issues for pebble bed reactors is the perception that the semi-stochastic nature of the
pebble distribution admits the possibility of collection of relatively reactive pebbles in regions of high neutron
flux, so that the local power density could become excessive either in normal operation or in accident scenarios.
Some rough estimates of the consequences associated with this phenomenon were performed at the INL in 2003.
In this study, various pebble flow scenarios were modeled that resulted in abnormally high concentrations of fresh
fuel. The probability of such configurations occurring as a result of stochastic variation is many orders of
magnitude lower than the typical beyond-design-basis events normally considered in high temperature gas reactor
analysis. Yet the nominal and accident fuel temperatures attained during these events was shown to be only
somewhat higher than normal and still lower than those required to induce significant fuel failure. However, in
light of the pebble temperature measurements made in the AVR [Baumer et al. 1990], some of which were much
higher than expected, a more rigorous analysis is warranted and is possible with advanced Discrete Element
techniques and other new modeling tools. The modeling techniques should be employed to characterize and
bound the stochastic component of pebble movement and feed these probabilities to a reasonably conservative
core safety analysis. Such tools can also be used to develop flow models for pebbles in the discharge and entry
regions and to examine pebble-packing issues.

Special considerations for prismatic reactors. In 2003 the INL developed “point designs” for pebble-bed
and prismatic-fuel versions of the NGNP [see MacDonald et al. 2003]. The objective of the point design project
was to develop a reactor specification with a mixed mean coolant core outlet temperature of 1000 °C, passive
safety, and about 600 MWt of power. Sensitivity studies for various block-fuel parameters were performed at
ANL and the INL to address design issues critical to this objective and to provide data for developing a fuel
specification for the AGR program discussed in Section 2 of this document. For modeling the block-type NGNP
with great geometric detail, the Monte Carlo code MCNP [LANL 2000] has proven itself to be a very powerful
tool; in conjunction with the ORIGEN depletion code [Croff 1980] with a coupling code such as MOCUP
[Babcock et al. 1994], it can follow a block-type core through its fuel cycle and produce accurate burnup and
isotopic buildup data in each fuel block. Since MCNP requires long calculation times to produce good statistics,
it is not a practical tool for performing large numbers of calculations in design studies, generating detailed core
power distribution, or analyzing the effects of small perturbations. For some scoping studies and sensitivity
analyses, the ANL codes DIF3D and REBUS-3 have been successfully applied. However, additional
developmental work needs to be done to improve computational models and user friendliness.

4.2.1 Fuel Cell and Assembly Spectrum Analysis for Cross Section Homogenization

For NGNP applications, both the DIF3D/REBUS system and PEBBED require cross-section data preparation
. ] using specialized techniques that are not implemented in
Spectra normalized fo equal fotal flux (0-14 Mev) current software in the form that is needed. Cross
sections used by PEBBED and DIF3D are calculated
4 externally and passed to these global reactor analysis
codes as input. For PEBBED simulations (and DIF3D
analyses of the New Production Reactor), these cross
. sections were calculated by the INL’s COMBINE code
[Grimesey et al. 1991] or by MICROX-2 [ORNL 1999],
neither of which is able to accurately model certain
phenomena that are characteristic of graphite-moderated
reactors with highly heterogeneous fuel arrangements
[Keller et al. 2004].
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As illustrated in Figure 4-8, thermal neutron spectra
in graphite moderated reactors have higher characteristic
o average energies than is the case for water moderated
Neutron energy, eV reactors, especially at the high (900 — 1000 °C) operating
temperatures that are anticipated for the NGNP
[Massimo 1976]. As a result, special methods are

Total cross sectien (Barns) and flux {

Figure 4-8. Typical VHTR spectrum and
some low-lying resonances.

73



required to account properly for self-shielding of resonances in the thermal energy range. This becomes
particularly important in situations with high burnup because of neutron upscattering into the prominent low-lying
resonances in plutonium. Core reactivity, temperature coefficients and other related phenomena are all highly
dependent on proper modeling of resonance effects. The required computational improvements will thus be
developed under this plan and implemented into the spectrum codes as appropriate.

Furthermore, the random distribution of fuel kernels within a compact or pebble is not accurately treated in
any of the available codes. This also adversely affects the accuracy of the all-important resonance shielding
calculations that are required to produce accurate cross sections. Efforts are under way at the INL and elsewhere
to address a range of issues associated with fuel based on the TRISO coated particle and to implement
improvements in a widely available code. The modifications to any of these codes could be construed as forming
the basis for a future DOE-owned stand-alone modern code for a proper treatment of resonances.

Finally, it should be noted that preparation of required cross section libraries from the basic nuclear data files
also involves very sophisticated data processing prior to application of the spectrum and assembly cross section
generation calculations described above. Under this R&D Plan, the INL will also maintain the necessary
expertise and software tools required for this step in the overall reactor physics analysis sequence. This will
include active participation in the National Nuclear Data Center’s Cross Section Evaluation Working Group
(CSEWQG), as well as in corresponding international organizations whose focus is on the key interfaces between
basic nuclear data measurements and the final ENDF files that have been evaluated and released for use in
subsequent reactor physics applications.

4.2.1.1 Development Of A Method For Improved Treatment Of Double Heterogeneity Using
Improved Dancoff Factors.

An important aspect of improving cross sections is to account better for the heterogeneity on two scales in
the NGNP: on a fine scale associated with the fuel particles, and on a more coarse scale associated with the
pebbles or fuel compacts. For the pebble bed reactor, self-shielding and shadowing effects are important and
must be accounted for on both scales. In the continuous-energy Monte Carlo code MCNP, it is possible to model
every single fuel grain in the reactor, using the repeated structures feature. However, in deterministic codes like
PEBBED or DIF3D, these features are accounted for in the cross sections they receive as input. Such cross
sections must be generated using explicit modeling of the heterogeneity or using correcting factors that account
for it (the Dancoff factors). Previous studies show that the available Dancoff factors are not sufficiently accurate.
Hence, the new method must also include accurate corrections for the effects of double heterogeneity [Rahnema
et al. 2004; Hudson et al. 2005].

Furthermore, existing Table 4-2. Spectral indices as computed by MCNP and MICROX-2.

codes used for gas reactor

analysis were developed lﬁCC 61(;{" ¢
without a full appreciation VICNP 2091 S (5)0
of the importance of 2 Epithermal-to-thermal ' '
ra'nd.()mn.ess in partl(;]e . P 238U captures MICROX-2 6.77 9.23
distribution. Recent studies diff (%) 15 23
indicate the error introduced Evithermal-to-thermal MCNP 9.63 10.99
by assuming a regular array | §* x 10’ P B35 fissions MICROX-2 9.99 11.34
of fuel lumps. Neither 1581 diff(%) 4 3
COMBINE nor MICROX MCNP 78.08 30 14
gives acceptable agreement 28 4 33U fissions to ' '
with continuous-energy 37 x10 B3U fissions lsqflfC(};())X-Z 27;9 30}44
MCNP calculations (Table 111 {70 -

4-2). The treatment of . 238 MCNP 0.360 0.463
randomness in DRAGON C zsUschag::i?:Sto MICROX-2 0.404 0.551
may also be inadequate. A diff (%) 12 19
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rigorous treatment of randomness in the distribution of fuel lumps has been developed at the INL and
incorporated into the construction of Dancoff factors. A similar treatment for explicit geometry lattice codes like
DRAGON will also be explored.

4.2.1.2 Develop the interface between a spectrum code and a pebble bed reactor core
simulator.

In the pebble bed reactor, fuel elements (pebbles) move in a semi-continuous fluid-like manner through the
core during operation. Recirculation of partially burned pebbles means that any pebble in the core is surrounded
by pebbles with a wide range of burnup. Furthermore, the spectral history of each pebble is unique and can only
be approximated (using a code such as PEBBED). Batch-loaded cores (LWR or prismatic gas-cooled reactor)
generate cross sections from unit cell burnup calculations assuming fixed boundary and spectral conditions. This
approach is not valid for the pebble bed reactor. Instead, cross section and core simulation calculations must be
executed simultaneously and iteratively to obtain the proper burnup conditions in each spectral zone (the pebble
bed reactor analog to an assembly or block). A simple version of this iterative process has been implemented
using PEBBED and MICROX. It uses zone leakage and temperature to obtain cross-sections by interpolation
among pre-computed data sets. Because the spectral zone itself is not clearly defined and contains a randomly
packed assortment of pebbles, a geometrically rigorous spatial transport calculation (2- or 3-dimensional) is
neither wholly effective nor computationally efficient for the algorithm described above. A 1-dimensional
(spherical) calculation with appropriate Dancoff factors and isotopics provided from PEBBED can yield cross-
sections with the required accuracy.

In a proposed approach, the INL spectrum code COMBINE will be modified to exploit the new Dancoff
treatment and be coupled to PEBBED. COMBINE solves the one-dimensional (spherical) B-3 approximation to
the transport equation with Bondarenko treatment of unresolved resonances and Nordheim treatment of resolved
resonances. It uses Dancoff factors to correct the resonance calculation in the presence of arrays of fuel lumps
and has options for self-shielding of cross sections in the thermal range. No specific geometry specification of an
assembly or lattice is required and thus it is suitably fast and accurate for the PBR problem described above.
Isotopics of the local pebble distribution, leakages from adjacent spectral zones, and zone temperatures will be fed
to COMBINE. COMBINE will use these to generate homogenized cross sections for the nodal diffusion
calculation and burnup-dependent cross sections for depletion if individual pebble flow streams.

COMBINE results have been compared favorably to analytic benchmarks and other calculations (ANISN
and TWODANT). Further validation will be required for NGNP-specific configurations such as:

* Infinite array of identical fuel pebbles (double-heterogeneity)

*  Infinite array of pebbles with a limited number of specified burnups (burnup effects)
*  Semi-infinite array of fuel pebbles and graphite reflector (leakage effects)

»  Full or half-core models of pebble-bed NGNP with specified axial burnup gradient

Corresponding MCNP models can be set up as benchmark cases. COMBINE and other spectrum codes can be
tested against these cases and each other to assess the effectiveness of various solution schemes.

4.2.1.3  Identify or Develop an Assembly Code for Prismatic Block Cross Section Generation

The prismatic reactor core, on the other hand, is composed of hexagonal graphite blocks containing coolant
channels and fuel compacts. The compacts contain TRISO particles distributed randomly within. A core
simulator code such as ANL’s DIF3D has as its basic computational element a hexagonal cell for which few-
group diffusion coefficients must be computed by a lattice or assembly code once the basic unit cell cross sections
have been determined. Previous analyses indicate that an under-prediction of about 3% in k-infinity for a fuel
element can occur if the fuel-graphite composite is treated as a homogenized mixture. Therefore, the lattice
transport code to be used for group constant generation must be able to treat the double heterogeneity properly
and, in addition must account for spectral variations across the basic lattice unit via appropriate neutron transport
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computations. This capability is available in a few lattice physics codes such as WIMSS8, APOLLO2, DELIGHT,
and DRAGON [Marleau et al. 2000]. Where such capabilities exist, the codes (e.g., WIMS8 and APOLLO) are
typically proprietary and are only available at great cost. In some cases, the source code is not available for
release.

This makes the DRAGON code an attractive option, and for this reason further assessment and development
of the DRAGON will be a major task in this project. This work will be done in collaboration with the researchers
at the Ecole Polytechnique de Montreal who originally developed the code. ANL has organized an information
exchange with them (for example, a workshop is to be held at ANL in February 2005). During FY-05, a complete
assessment of the DRAGON code deficiencies and identification of the necessary modifications that would make
the code attractive for prismatic NGNP applications will be provided. It is also intended to obtain better code
documentation, support for an alternative data library, and descriptions of advanced models and capabilities not in
the public domain (e.g., methods of characteristics solution, homogenization/de-homogenization, and parallel
code version).

This effort will be coordinated with other ongoing and proposed projects. For example, there is already an I-
NERI project underway and centered at the INL to develop safety analysis codes with experimental validation for
a prismatic VHTR. The collaborators include the University of Michigan and KAIST (Korea). One of the tasks
in this project is to use MCNP to develop cross sections for DIF3D in place of a deterministic assembly code.
This project complements the DRAGON effort and will provide an essential comparison of methods. While
useful for principal cross sections, however, generation of cross sections with Monte Carlo calculations is not
very practical for group scattering cross sections given the tremendous computational effort required.

4.2.2  Static Analysis For Evaluations Of Criticality And Power Distribution

Fuel management and design optimization: The fundamental quantity in reactor physics analysis, which
determines all other aspects of core behavior, is the neutron flux distribution. Extremely accurate calculations of
the neutron flux, accounting for great geometric detail, can be made with Monte Carlo codes such as MCNP.
However, Monte Carlo codes are still prohibitively expensive for use in repetitive design and tradeoff calculations
or analysis to determine local reaction rate distributions or small reactivity effects. Nor can current coupled
Monte-Carlo-depletion codes be applied to the pebble bed reactor (Figure 4-9), because they do not account for
fuel movement during operation. Deterministic codes offer much
greater computational speed, at the cost of reduced geometric
modeling capability. However, the natural geometric
configurations of both pebble-bed and prismatic VHTRs lend
themselves to accurate modeling by deterministic codes: circular
cylindrical geometry for the pebble bed reactor and hexagonal

geometry for the prismatic reactor. For prismatic reactors, the Centre Reflector

hexagonal nodal code DIF3D is a modern deterministic tool. It
requires additional work to implement a thermal feedback model

and a tabulation scheme of nodal cross sections versus depletion
and temperatures. Deterministic code systems available for design
and analysis of pebble bed reactors are generally based on older,
less accurate methods that do not take advantage of advances in
computer capabilities. These old methods have been superseded
by more convenient and accurate capabilities, of which the central | Bottom Reflector |
feature is their application of nodal techniques. DIF3D possesses
such a nodal solver. A new nodal technique for cylindrical
geometry is being developed with NERI funding and is being
implemented in PEBBED [Ougouag 2004]. This NERI draws on

Side Reflector

A
‘ Core Barrel Support Structureé

support or cooperation from the Georgia Institute of Technology, . )
Penn State University, the University of Arizona, and PBMR Figure 4-9. Sketch of the PBMR.
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(Pty), Ltd. of South Afica.

While PEBBED has been used for some basic equilibrium core design problems, it still required
development of some key features that will allow it to be used extensively as a design and analysis tool for the
NGNP. Some of the more important ones are listed here.

1. Complete implementation of the in-line cross-section generation capability that accurately treats
resonance effects of the doubly heterogeneous fuel, leakage, and temperature effects.

2. Implement the capability to model time-dependent fuel loading cases (non-equilibrium cores).

3. Implement coupled neutronic and thermal-hydraulic transient capability that properly computes
fuel and moderator temperatures.

4, Implement a gamma photon transport and adjoint (variational) computational capabilities.

PEBBED does possess an advanced optimization routine (a genetic algorithm) that allows automated
searches for optimal core designs and fuel loading patterns. Such methods have been applied to LWR codes for
some time but have yet to be developed for the prismatic reactor. This will need to be addressed. Fuel blocks are
proposed that may have compacts with differing enrichments, packing fractions, and burnable poison
concentrations. The block-refueling pattern may be strictly radial or may have an axial shuffling component as
well. Core optimization and fuel loading must be automated to some extent to produce viable cores within
practical time limits. There are a number of advanced optimization approaches, including genetic algorithms,
simulated annealing, neural networks, Tabu search, and others. One or more of these will be explored and
implemented in conjunction with DIF3D/REBUS-3.

Neutron transport: For some core physics issues, diffusion methods are not appropriate, and transport
methods are required. Often, it suffices to use transport methods on a local scale, to incorporate transport effects
into diffusion-theory parameters such as cross sections, as discussed in the previous section. For example, in the
pebble bed reactor, control rods are required to shut the reactor down rapidly on demand and keep it subcritical at
low temperatures. The pebble bed reactor also contains a large gas plenum above the core through which pebbles
are dropped. Diffusion theory alone cannot accurately predict neutron transport in these regions, so some sort of
transport calculation is necessary. Nor does diffusion theory solve the gamma transport problem and thus the
actual heat deposition distribution differs from what it can compute. Various whole-core transport methods and
codes are being developed that can address these problems. Partial-core models can also be used to quantify the
error resulting from the diffusion approximation. For the prismatic core analysis, DIF3D contains a variational
transport solver that can properly treat regions in which diffusion theory is not valid. A NERI project, led by F.
Rahnema of the Georgia Institute of Technology in conjunction with the INL, is investigating novel neutron
transport techniques that can be used to accurately treat gas plenums and control rod regions in the pebble bed
reactor [Rahnema 2004]. In addition to code and model development activities, reactor physics workshops and
meetings on this item will be conducted throughout the life of the NGNP project.

Monte Carlo techniques are free from all these VHTR modeling issues if fuel particles are modeled explicitly
in the core calculation. However, this detailed modeling is currently unattractive because of the tremendous
problem size and because a very large number of neutron histories is required to resolve fuel-element power
distribution and small reactivity effects. As a practical matter, the necessary calculations are beyond the current
capabilities of even the most sophisticated computers. Furthermore, several important phenomena such as
thermal feedback at power generating conditions, flux uncertainty propagation in the depletion calculation, and
fission product buildup are not properly addressed in these tools at the present time. To do so with the Monte
Carlo technique would increase the computational requirements even further. In contrast, deterministic three-
dimensional whole-core transport calculation provides a possibility of resolving all these problems as long as the
proper fuel modeling and thermal feedback capability is incorporated in the underlying effective cross section
data.
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More recently, computational techniques and advances in parallel computing have made feasible more
detailed 3D deterministic transport calculations for some applications such as accurate gamma transport and deep
shielding. DeCART, Attila [Gougar 2004], and EVENT [De Oliveira 1998] are codes that will be explored for
use in the project. It is noteworthy that DeCART perform whole-core transport calculation in fine group level for
heterogeneous geometries and thus it avoids the cross section homogenization and condensation steps. Attila also
can be run with very high energy resolution. Full-core transport modeling with these codes will still require
tremendous computational power and is not practical for scoping or design optimization calculations. Rather,
such techniques (Monte Carlo or deterministic) will be useful for benchmarking activities once a design has been
rendered using the other approaches described above. With continued advances in computer power and
implementation of innovative numerical solution methods, these techniques may in the future provide a practical,
high-fidelity capability for routine use in design and analysis.

Isotope depletion. For prismatic reactors, the depletion code REBUS-3 was written to perform depletion
calculations in coordination with the DIF3D nodal diffusion code. The DIF3D/REBUS-3 code system is capable
of multigroup flux and depletion calculations in hexagonal-Z geometry. This code system uses the DIF3D
module as the flux solver and contains both nodal diffusion and transport theory capabilities. Therefore, it can be
adapted to prismatic NGNP reactor problems with limited effort compared to other codes. Lumped fission product
models, however, need to be developed in order to make the microscopic depletion scheme used in REBUS-3
practical.

PEBBED is a combined diffusion/depletion code conceived to solve
self-consistently for the neutron flux and the burnup distribution in a pebble
bed reactor with circulating pebbles. As noted above, it was originally
written with a finite-difference diffusion solver, but nodal diffusion modules
have been installed in the code and are currently undergoing checkout and
debugging. An analytical nodal solver using a “moments-stepping” method
that allows for variable cross sections within nodes has been developed by
an INL researcher. Such advances in burnup calculations will be explored
as a complement to the development of the nodal diffusion solver. and will
be implemented in PEBBED to complement the nodal solution.
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Pre-asymptotic core analysis in the pebble bed reactor. PEBBED
obtains the asymptotic distributions of neutron flux and burnup directly,
without following the time-dependent distributions in the run-in period.
This property of the code permits very rapid solution. However, a typical
pebble bed reactor may take as many as three years to achieve an
asymptotic state. A theoretical formulation for pre-asymptotic core analysis
is under way at the INL and will ultimately lead to time-dependent solutions
of the coupled pebble-flow/burnup problem.

Non-axial pebble flow in the pebble bed reactor. The flow of pebbles
in a pebble bed reactor is not strictly axial, particularly near the discharge
tubes (see Figure 4-10). While the neutronic importance in this region is
minimal, a method and code must be developed that link together depletion
zones along the true flow path of pebbles even for flow lines that are not
strictly axial. In this development the axial flow of pebbles is modeled, as
in the previous case. In addition, the radial drift of pebbles is also
accounted for. Effective pebble flow characteristics are developed and used
to link computational coarse nodes systematically. Experiments and some Figure 4-10. Pebble flow
computations have been performed that confirm and characterize the strong lines (top) and sketch of the
deterministic (streamlined) component of pebble flow. A computational defueling cones near the
approach to pebble flow using a particle dynamics approach has been bottom of the PBMR core.
initiated at the INL and similar efforts are underway at MIT and other
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universities. Results from these efforts will be used to construct the flow lines over which the depletion equations
are solved in PEBBED.

4.2.3 Kinetics, Thermal Module Coupling, and Feedback

Three-dimensional spatial kinetics capabilities have been under development for more than 20 years.
Practical tools now exist and include the public versions of NESTLE [EPRI 2003], PARCS [Joo et al. 1998],
VARIANT-K, and DIF3DK. These high-fidelity kinetics methods are important for core transients involving
significant variations of the flux shape but have not been systematically applied to graphite-moderated, helium-
cooled reactors. In the future, integrated thermal-hydraulics and neutronics methods should be extended to enable
modeling of a wider range of transients pertinent to the NGNP. Required advances include increasing the
efficiency of the coupling approaches and improving the representation of cross section variations.

For the pebble bed reactor, the fixed-source solver in PEBBED will be extracted and implemented into a
transient thermal-hydraulics code to calculate the flux and power distribution. Kinetics parameters such as the
delayed neutron fraction will also have to be generated for the kinetics code. These are generally obtained from
adjoint flux calculations on the core model. DIF3D possesses adjoint capability, but PEBBED currently does not.
The analytic nodal equations will be modified to allow for adjoint solution and the solver in PEBBED will be
upgraded. Next, time-dependence must be introduced into the PEBBED fixed-source solver and the source term
must be reformulated to account separately for prompt and delayed neutrons, for neutron kinetics analysis within
a pebble bed reactor systems model for a code such as RELAPS. A cooperative research effort between Penn
State University and PBMR (Pty), Ltd of South Africa is underway to develop a coupled neutronics-thermal-
hydraulics code for pebble-bed reactor transient and safety analysis starting with the NEM code [Ougouag et al.
2004]. The INL plans to participate; the PEBBED code would be used to generate steady-state conditions to be
fed to the transient code. This is a good bridge to a complete steady state and transient code.

Kinetics is the study of very short-term transients in the neutron flux, so it is probably not necessary to
account for the slow motion of fuel pebbles in kinetics analyses. The portions of PEBBED that account for fuel
motion (the burnup equation solver and the pebble recirculation matrix) are not needed for kinetics calculations,
and it would unnecessarily encumber RELAPS to couple it to the full PEBBED code. Initially, the time
dependence in the kinetics equation will be treated with finite-difference techniques, but once this method is
working more advanced approaches to treating time dependence will be explored.

Furthermore, steady state thermal hydraulic calculations correctly assume a close coupling of fuel and
moderator temperatures. This assumption is invalid in sharp transients during which the kernel temperature can
rise dramatically and independently of the surrounding graphite. Whichever transient codes are used for either
prismatic or pebble-bed analysis, a proper separation of fuel and moderator temperature effects must be
implemented.

Nodal diffusion and transport kinetics capabilities have been developed for the DIF3D code in the past.
These capabilities have been successfully applied for transient analysis of thermal reactor systems (e.g., NPR-
HWR, RMBK, VVER, and LWR) by integrating them in a system analysis code, SASSYS. Initial estimation
indicated that a multigroup analysis (about 20 groups) is required to represent accurately the reactivity effect of
spectral change. The multigroup capability of DIF3D would be attractive for integration with a system code, such
as RELAP5/ATHENA, that can be utilized for the analysis of the NGNP. Eventually, it can be upgraded with the
new kinetics treatment described above.

424 Material-Neutronics Interface

Optimization of kernel size and packing fraction. One design issue that be studied as the new tools are
developed is the diameter of the fuel kernel within the TRISO particle. Changes in this parameter (while
otherwise maintaining the overall TRISO structure and overall diameter) are expected to have profound effects on
fuel burnup, fission product migration, and fuel particle reliability. Similarly, studies of particle packing fraction
have begun and may have significant effects on fuel performance and core design for either the prismatic or
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pebble-bed concepts. These and related fuel design parameters may have direct impact on economics and safety.
Work has begun in this area and should continue [Ougouag et al. 2004].

Irradiation Effects and Annealing Feedback. In traditional neutron kinetics codes, suitable for the analysis
of light-water reactors, thermal feedback is usually accounted for. Other forms of feedback are unimportant and
are not explicitly modeled. For the NGNP, the situation could be drastically different. Of particular importance is
the change in material properties caused by radiation. For example, the thermal conductivity of graphite is
degraded gradually as radiation damage accumulates. Similarly, some nuclear properties, such as the scattering
cross sections, are altered by the damage. During transients, the increase in temperature may anneal some or all
of the damage, resulting in (partial) property recovery. This could, for example, imply that the scattering cross
section would increase during a transient, resulting in stronger thermalization properties and an increase in
reactivity. Other similar phenomena are believed to occur that also have a potential impact on the safety of the
NGNP during extreme transients. The feedback mechanisms just described must be incorporated into the kinetics
codes. The characterization of irradiation damage and its effects on material, neutronics, and thermal properties is
another important task in this research [Hawari 2004].

4.2.5 Validation, Verification, and Ongoing Improvement of Code Suite

The resulting suite of deterministic codes developed above will be verified against reference solutions
obtained using Monte Carlo and deterministic models and against integral experiments. The reference (numerical)
solutions will enable the accuracy of specific assumptions and approximations to be tested and verified. The
double heterogeneity treatment will be examined for detailed fuel block and pebble problems by comparing the
lattice code solutions with continuous-energy Monte Carlo solutions. The whole-core solution scheme will be
verified against multi-group Monte Carlo solutions using pre-calculated multi-group cross sections and
homogenized fuel-element models. The pebble bed reactor solution will also be compared against results from
the code VSOP [Teuchert et al. 1980].

As the improvements and the extensions are implemented, the overall accuracy of the resulting suite of codes
will be quantified by analyzing appropriate integral physics experiments. All known reactors, critical facilities,
and other experiments of both types have been assessed for suitability as benchmarks [IAEA 2001]. For the
prismatic reactor, the HTTR facility in Japan [Fujikawa et al. 2001] possesses large amounts of critical reactor
physics data that can be used for validation purposes. For the pebble bed reactor, the HTR-10 [Zhong and Qin
2001], and possibly PROTEUS, may also provide essential data. HTR-10 has in fact been selected as the initial
candidate for a full evaluation under the integral benchmark data task as noted previously. In an independent
effort, a set of neutronic and thermal-hydraulic benchmarks for the PBMR has just been accepted by the
OECD/NEA. This benchmark effort has been a cooperative effort among PBMR, (Pty), Ltd., Purdue University,
Penn State University, and the NRG Corporation of the Netherlands. The INL has been invited to join this effort.
Formal participation by the INL is expected to begin in June of 2005 when the next PBMR benchmark workshop
is held in Paris in conjunction with the OECD/NEA meeting.

Validation and verification of the tools used for these predictions can be accomplished through the collection
of a large compendium of relevant in-core critical experiment data into a detailed, peer-reviewed standard format
as described previously in connection with the IRPhEP. Such an approach has also been taken by the USDOE-
NNSA in handling the validation and verification for stockpile stewardship where computer modeling is also
relied upon extensively. In support of this effort, it would be appropriate to ultimately establish and promulgate
validation and verification standards, or at least some set of test problems, for the Generation IV systems. If
suitable validation and verification data do not exist, experiments will have to be designed and conducted to fill in
the gaps.

Monte Carlo simulation itself provides a powerful tool for validation and verification. The recent and
continuing growth in computer power motivates the assessment and further development of Monte-Carlo-based
analysis capabilities applicable to multiple reactor types. Enhancement of these codes would also be investigated,
including the propagation of errors as a function of depletion, provision of temperature interpolation capability,
and modeling of thermal-hydraulic feedback.
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The need for appropriate nuclear physics experiments (e.g. critical facilities) may emerge from this effort as
the current nuclear data picture comes into focus. Every large R&D program leading to the development of a
working reactor was accompanied by extensive nuclear data measurements and evaluations. The operating range
of the NGNP (temperature and burnup), along with more stringent requirements of nonproliferation and
repository performance, will likely require an extensive experimental nuclear physics component to validate the
reactor physics calculations, including the Monte Carlo benchmarks.

4.3 Thermal Hydraulics

The flow and heat transfer in the NGNP are characterized by complex physics in complex geometries.
Advanced simulation tools are available to simulate turbulent flow and heat transfer in engineered systems. It is
desired to validate such tools to determine their usefulness for applications to the NGNP. It is fully expected that
advanced computational fluid dynamics (CFD) codes will be needed to simulate regions of complex turbulent
flow in the plant. Despite the size and complexity of the plant, it is currently expected that thermal-hydraulics
systems analysis codes can be applied, in conjunction with CFD codes, to analyze the plant fully. The distinction
between CFD and systems analysis codes stems from the distinctions between the software tools themselves.
CFD codes use first-principle based solutions and subdivide a problem domain into cells that are small with
respect to the phenomena that requires modeling. Systems analysis codes use field equations that have been
simplified (for example by not including the viscous stress terms) and subdivide the problem into a macroscopic
structure that does not model phenomena such as turbulent eddies. Of course, neutronics/fluid behavior
interaction will also be important to analyze in the NGNP.

The methOdOIOgy applied to i. PIRT: Key Phenomena
ensure that the thermal-hydraulic Identified
software can be used with
confidence to calculate the
behavior of the NGNP is outlined
in Figure 4-11. However, it is
useful to outline how the
methodology will be applied
specifically for the thermal-
hydraulic R&D outlined in this

]
iii. Design & Perform
Experiment —
No Provide Needed Data

ii. Are
adequate data
available for

validating
software?

\ A

Completion of development

. . Yes V“
section—since thf? thermal- v. Software Development
hydraulics R&D, including the or Selection of More
: : iv. Validate Software to Unsuccessful Sophisticated Software
following summaries, stems CemienE G Caeilliy validation -
directly from this methodology. to Calculate Key >
Phenomena
Successful vi. Calculation of Key
The R&D process is validation Phenomena Identified in
. > PIRT is Reasonable
progressing as follows:

Figure 4-11. Thermal-hydraulic software validation methodology.

a. The R&D is based on the latest PIRT. Presently the only available PIRT is the “first-cut” PIRT given
in Table 4-1. However, as the design of the NGNP matures, an increasingly more sophisticated PIRT will
be required to identify the key scenarios and important phenomena (see Figure 4-11 Step i). Hence the
R&D plan is based on the assumption that an ever-improving PIRT will be available. Thus it is clear that
all phenomena that must be calculated have not yet been identified. A formal PIRT should be created in
conjunction with the pre-conceptual design in approximately 2006 or 2007 and then updated as the
conceptual design, the preliminary design, and finally the final designs are formulated. Additional
discussions on the upcoming PIRT requirements are summarized below.
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b. The software used to analyze the NGNP behavior must be validated for the scenarios of
importance. The process thus begins using existing data. If either existing data are not available or the
existing data are not adequate to cover the NGNP’s operational envelope, then experiments must be
defined and built, and data must be produced to provide the basis for software validation (see Figure 4-11
Steps ii and iii). Hence the first R&D categories discussed below (Sections 4.3.1, 4.3.2, and 4.3.3) are
experimental.

c. Software development. If the validation studies show the software cannot adequately calculate the key
phenomena in the important plant scenarios, then development must be done to improve the software or,
alternatively, more sophisticated software must be used if available or developed if not available
(Fig. 4-11 Steps iv and v).

d. Analyses. Once the software has been validated and shown to be capable of calculating the important
phenomena to the accuracy required (Fig. 4-11 Step vi), then best-estimate analysis may begin.

Software validation, development and analysis (items ¢ and d) are summarized in Section 4.3.4 for both the
computational fluid dynamics and systems analysis codes.

Both the experimental research areas and the software-directed research areas are focused on the high-
priority R&D areas identified in the “first-cut” PIRT, as outlined in Table 4-1, where key regions of concern are
identified. In each case, the issues are whether the system will survive, particularly under the most challenging
accident conditions, and whether the system will have an adequate operational lifetime for the conditions that are
postulated (rated operational conditions, off-normal operational conditions, and accident conditions). The high-
priority research areas include: (i) the core heat transfer, (ii) mixing in the upper plenum, as well as the lower
plenum, hot duct, and turbine inlet, (iii) the heat transfer in the reactor cavity cooling system, (iv) air ingress
following a system depressurization, and (v) the behavior of the integral system during the key scenarios,
including the contributions of the balance-of-plant. These R&D areas are outlined in Table 4-3 together with a
summary of the key needs.

The R&D areas, including the relevant R&D tasks and the specific needs, are discussed in more detail in
Sections 4.3.1 through 4.3.4. For each of the R&D topics study areas have been assigned (see 3™ column of Table
4-3) that indicate whether the R&D is experimental, i.e., an activity designed to produce validation data; is
computational fluid dynamics (CFD) code-related; or systems analysis code-related.

The “first-cut” PIRT focuses solely upon the phenomena that are expected to dominate within the reactor
itself and does not include any phenomena that may occur in the balance of plant or in an intermediate heat
exchanger (IHX) if one is present. While it is likely that the phenomena that present the most significant risk to
the safety of the facility occur within the core, phenomena resulting from equipment failures in the balance of
plant or flow instabilities in an intermediate heat exchanger might also have significant impacts on the safety of
the facility and may be included in a future PIRT. In particular, the nuclear-chemical coupling IHX, which
provides the heat transport to the hydrogen production plant, similar to the core, has many coolant channels that
could produce flow instabilities. The IHX will have inlet and outlet plenums, with mixing and stratification
phenomena, so the reactor vessel plenum experiments could also apply in this case.

Flow instabilities may also be phenomena with complicated transient effects. At some point, as the PIRT
progresses, there may be a future need to separate out a task for the development of transient CFD analyses
techniques. As this could be a major undertaking, the budget may need to be adjusted accordingly at that time.
What is acknowledged at this stage, even though the PIRTs have not reached this level of detail, is that local
features in many cases determine the generation of the flow field turbulence structure. Design features to mitigate
thermal stresses, promote mixing, enhance heat transfer and reduce vibration are fluid-structure coupling
mechanisms, which need to be treated in the CFD development.
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431 CFD Code Validation Experiments - Introduction

The experiments that stem from the areas identified in Table 4-3 are described in the following six sections.
These experiments are aimed at producing validation data for CFD codes. Some potential issues identified to date
include "hot streaking" in the lower plenum evolving from "hot channels" in the core (Figure 4-12), the geometric
transition from the lower plenum into the outlet duct and the resulting temperature distribution in the short outlet
duct, "hot plumes" in the upper plenum during "pressurized cooldown" (loss of flow accident) and parallel flow
instability in the core during pressurized cooldown [Bankston 1965; Reshotko 1967]. Several of these
phenomena are pertinent to pebble-bed versions of the NGNP as well as the block versions. Although the
geometry used as the basis for the first experiments is specific to the prismatic design shown in Figure 4-12, the
strategy for designing the CFD code validation experiments is rooted in using scaling studies that will enable the
resulting data to be directly related to other designs by using non-dimensional parameters. This approach
maximizes the relevance of the specified experiments to the design that is eventually selected whether it is a
pebble-bed or a prismatic design. The initial studies will concentrate on the coolant flow distribution through
reactor core channels (hot channel issue) and mixing of hot jets in the reactor core lower plenum (hot streaking
issue), phenomena that are important both in normal operation and in accident scenarios. In the future we can
expect new thermal hydraulic issues to be identified as the NGNP development proceeds through the various
design stages and then construction, licensing, and operation.
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Figure 4-12. Core high power zones generate very hot exit gas and lead to
high temperatures at turbine inlet.
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Meaningful feasibility studies for NGNP designs will require accurate, reliable predictions of
material temperatures to evaluate the material capabilities. In NGNP concepts, these temperatures depend
on the thermal convection in the core and in other important components. Unfortunately, correlations in
one-dimensional system codes for gas-cooled reactors typically under-predict these temperatures,
particularly in reduced power operations and hypothesized accident scenarios. Conceptually, CFD codes
with turbulence models can yield predictions for improvement of correlations and preliminary design.
However, most turbulence models in general-purpose CFD codes also provide optimistic predictions in
that they under-predict resulting surface temperatures as shown in Figure 4-13 where the data are plotted
as solid red squares [Mikielewicz
et al. 2002; Richards, Spall and 500+ Run 618
McEligot 2004]. These treatments
are further complicated by the non- 4751
homogeneous power distributions
with strong peaking that can occur T,., (K) 4507
and buoyancy, strong pressure wall

gradients and gas property 4251
variations in the channels ("hot
channel” issue). 4001

Unfortunately, no universal 3754 /% ——_— R':alizabie k-&
turbulence model has yet been ‘ W Shehata
developed -- so CFD predictions 350+
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x/D

Fig. 4-13. Preliminary assessment of popular turbulence

models for flow in a vertical circular tube such as a

prismatic NGNP cooling channel.

must be re-assessed via
experiments for each new complex
situation encountered in the
development of advanced reactors
and their supporting systems.
Further benchmark data are needed for complex situations - to avoid these problems and to improve
predictive capabilities. These bases can be obtained from physical experiments or from numerical
experiments such as direct numerical simulations (DNS) or large eddy simulations (LES), after validation
with measurements. And, ultimately, prototypical integral experiments will be required for licensing
confidence.

The general approach is to develop benchmark experiments needed for assessment in parallel with
CFD and coupled CFD/systems code calculations for the same geometry. In each case, the benchmark
experiments must be linked to the “potential” design by comprehensive scaling analyses that illustrate the
relationships between the experiments and design—to ensure the experiments yield benchmark data that
are within the design’s operational or postulated accident envelope.

Velocity and turbulence fields will be measured in the INL's unique Matched-Index-of-Refraction
(MIR) flow system; these data will be used to assess the capabilities of the CFD codes and their
turbulence models and to provide guidance in improving the models. The virtue of the MIR stems from
the use of test sections that are clear and with the same index of refraction as the working fluid.
Therefore, the experiments are not only quantitive—since scaled data measurements are recorded—but
also qualitative since the various flow processes can be visually observed and filmed. Heat transfer
experiments will be developed and accomplished for the same purposes. Existing databases from
experiments, direct numerical simulations and large eddy simulations will also be utilized where
appropriate. The experiments defined below provide essential validation data in the following R&D
areas:
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1. Core heat transfer experiments:
a. Turbulence and stability data from vertical cooling channels (2005-2007)
b. Bypass flow studies (2007-2008)
c. Exit flows in pebble beds (2006-2008)

2. Upper & lower plenum fluid behavior experiments:
a. Fluid dynamics of lower plenums (2005-2008)
b. Heated flows in lower plenums (2005-2007)
c. Interactions between hot plumes in an upper plenum and parallel flow instabilities (2007-
2009)

3. Air ingress experiments: heat transfer and pressure drop of mixtures of air and helium (2006-
2007)

4. Larger scale vessel experiments: to examine the behavior in the core, in the plenums, and the
interactions between them (2010-2014).

5. Integral Experiments: HTTR and HTR-10
6. Reactor Cavity Cooling System Experiments

In general, two types of experiments are planned: fluid dynamics measurements and heated flow
studies. The purpose of the fluid dynamics experiments is to develop benchmark databases for the
validation of CFD solutions of the momentum equations, the scalar mixing, and the turbulence models for
typical NGNP geometries in the limiting case of negligible buoyancy and constant fluid properties—that
is, when the flow is turbulent and momentum-dominated. The intent of the heated flow experiments is to
provide data on the modifications of the thermal hydraulic behavior (and proposed turbulence models) as
additional effects, such as gas property variation and buoyancy, become important.

The subsequent discussion is divided into four general areas: (1) core heat transfer including
experiments 1.a through 1.c above, (2) upper and lower plenum fluid behavior including experiments 2.a
through 2.c above, (3) air ingress experiments, and (4) larger scale vessel experiments.

4.3.2 Core Heat Transfer Experiments

Vertical cooling channel turbulence and stability experiments: This experiment will provide
documented temperature, velocity, and turbulence field data for forced and mixed convection (buoyancy
effects) and gas property variation in NGNP cooling channels in order to validate the turbulence models
at reactor conditions for which benchmark data are not available. The proper calculation of turbulence
directly influences both the flow and temperature of the cooling. Instrumentation will include
miniaturized multi-sensor hot-wire probes developed as a task in a recent NERI project for gas-cooled
reactors [McEligot et al. 2002]. Both down-flow (normal operation) and up-flow ("pressurized
cooldown") will be considered.

Turbulence modelers request measurements of the basic quantities (dependent variables) of their
governing partial differential equations for validation (and guidance), quantities such as turbulence kinetic
energy and Reynolds stresses, etc. These data generally have not been available for internal flows with
gas property variation. Experimental databases are currently available to assess some aspects of the "hot
channel" problem, particularly forced convection, but not with details of the turbulence structure
[McEligot 1986]. Additional measurements will be obtained in ongoing university projects. These
sources and the existing literature will be compared to the requirements identified above for qualified
databases to determine which additional measurements are needed for heated gas flow in circular tubes.
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These data will be sought and, if of benchmark quality and available, will be acquired to reduce our
experimental needs and costs. Unfortunately, many of the extensive archival publications on mixed
convection (buoyancy influences) are not adequate to serve as databases for CFD assessment -- and
measurements to evaluate details for turbulence models are lacking for complex situations as in the
NGNP concepts. Ultimately sensitivity studies will be required to quantify the relative importance of
factors that influence the turbulence, including potential geometrical and hardware configuration

variations.

For normal operation, the flow in the NGNP
coolant channels can be considered to be
dominant turbulent forced convection with slight
transverse property variation. In a pressurized
cooldown simulation, the flow quickly becomes
laminar with some possible buoyancy influences
[McEligot and McCreery 2004] and parallel flow
instabilities may become important [Bankston
1965; Reshotko 1967]. Flow is predicted to be
upwards in the inner and middle rings and to
remain downward in the outer ring; heat transfer
may be to or from the gas, depending on location
and timing. During the initial transient, the
turbulent criteria are all predicted to remain
below their thresholds for significant effects as in
normal steady operations [McEligot and Jackson
2004]. Some insight into the complicated
buoyancy influences in heated laminar flows was
provided by Scheele and Hanratty [1962, 1963]
for developed flows. In contrast to turbulent
flow, an "aiding" laminar flow (heated up-flow or
cooled down-flow) enhances heat transfer
parameters; an "opposing" flow reduces these
parameters until it becomes unstable and
undergoes transition to a turbulent-like flow. For
opposing flow, Scheele and Hanratty suggest that
above a threshold there is a transition to an
asymmetrical flow with local separation at the
wall and then transition to an unsteady and later
intermittently turbulent flow; this situation cannot
be predicted adequately with a systems code or a
steady, axi-symmetric CFD code.

This experiment (Figure 4-14) will support
the efforts of the current computational task
concerning the hot channel issue by providing
benchmark data for detailed assessment of its
turbulence models for forced and mixed
convection with helium property variation. The
miniature multiple-sensor hot-wire probes from
Profs. Wallace and Vukoslavcevic (Figure 4-15)
will be inserted through the open exit to obtain
point-wise temperature and velocity
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Fig. 4-14. Potential apparatus to obtain
benchmark turbulence data in heated channel
flow.
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Fig. 4-15. Schematic diagram of miniature five-
sensor probe by Vukoslavcevic and Wallace
[2003], the dimensions are in millimeters.
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measurements. Hence, our objectives are to measure the fundamental turbulence structure and to obtain
benchmark data to assess CFD codes for high temperature gas flows that are in the forced and mixed
convection regions, for a range of conditions important in VHTRs. To achieve these objectives the
experiment will provide an approximately uniform wall heat flux boundary condition in a tube for helium,
either ascending or descending and entering with a fully-developed turbulent velocity profile at a uniform
temperature as in coolant channels after passing through an end reflector.

The studies for FY-05 include initiating preliminary design of the apparatus and estimating costs and
schedules. Final design, re-evaluation of costs and schedules and initiation of fabrication are planned for
FY-06 with equipment operation, measurements and documentation occurring in FY-07 and FY-08.

Bypass flow experiments. The bypass is the core flow that moves through the core via the interstitial
passages and non-cooling passages in a prismatic reactor and through unanticipated zones of low
resistance in a pebble-bed reactor and through the reflector regions in both designs. The bypass may vary
from 10% to 25% or more of the total core flow and will vary during the lifetime of the reactor as a
function of the local temperature and the changes in the dimensions of the graphite blocks due to
irradiation damage. Because the bypass flow exerts considerable influence on the core temperatures and
the peak exit cooling channel jet temperature and thus the temperature distribution in the lower plenum at
operational conditions, identification of the NGNP core bypass characteristics and its influence on the
reactor’s peak temperatures is crucial.

The resolution for this phenomenological issue may well have to be a statistical approach similar to
that used for the classical hot spot/hot channel factors. A high-level stochastic structure involving a
combination of materials modeling, both first-principles and correlations, thermal-hydraulics R&D and
manufacturing practice will need to be put in place early. This will guide the research of university
participants. It is anticipated that university researchers will investigate the various factors that influence
the bypass and perhaps develop preliminary models. Bypass flow experiments are envisioned, in FY-07
and -08, to test and confirm the various theories regarding factors that influence the quantity of flow
bypassing the coolant passages and core (in either prismatic or pebble bed reactors). Functional
dependences on factors such as manufacturing tolerances and core configuration changes due to
irradiation and thermal expansion will be determined. In such experiments hardware may be built to
represent core hardware that might result from prolonged irradiation and consequent non-uniform
distortion.

Exit flows in pebble beds. An MIR experiment will be conducted to examine flows in pebble beds
near their outlets. A key difficulty in analyzing the safety of pebble bed reactor systems is predicting the
maximum fuel temperatures and chemical reaction rates locally in the coolant outlet region (e.g., "hot
spots") where the temperature field is generally high. Typically, one-dimensional system codes are
applied for transient safety analyses and parameter studies during preliminary design [Oh, Moore, and
Ambrosek 2000]. A one-dimensional calculation predicts quantities that are averaged across the flow
(e.g., the core diameter) and does not predict the highest temperatures or their locations. Further, since
chemical reaction rates vary nonlinearly with temperature, the average reaction rate is not the reaction rate
at an average temperature. While these systems codes are needed, it is desirable to supplement them with
three-dimensional calculations for final designs and for estimating "hot spot factors" to improve their
predictions. Potentially, 3-dimensional CFD codes can be applied - using a porous medium
approximation - to find the coolant velocity and temperature in localized "macroscopic" regions. Then
direct numerical simulations (DNS) can be used to identify the point-wise peak temperatures and their
locations ("microscopic" treatment). The goal of this research is to develop accurate techniques for
predicting maximum temperatures in NGNP concepts that use pebble bed technologies by coupling CFD
calculations with experiments in the unique INEEL MIR flow system.

The flow through a pebble bed core is not uni-directional as in experiments to derive flow
correlations. The general flow converges and diverges (in addition to the localized changes in direction at
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the pore-scale). However, it is well known to fluid physicists that a convergence stabilizes flows
[Schlichting 1979]; in a turbulent flow, the turbulence levels can be reduced below expectations and the
flow can even be "laminarized" [McEligot and Eckelmann 1993; Satake et al. 2000]. A consequence is a
reduction in convective heat transfer coefficient and, hence, an increase in surface temperatures. While
criteria for this occurrence have been hypothesized for turbulent boundary layer flows [Murphy,
Chambers and McEligot 1983], none is known to us for converging flows in porous media. Appropriate
measurements are needed to quantify this phenomenon and, hence, to determine its importance in pebble
bed reactor technology.

Under accident conditions (no forced flow) heat is transported by radiation, heat conduction of the
pebbles (through the contact points) and convection. An integral simulation can only be done using the
porous medium approach. For this treatment several parameters are needed, such as pressure loss and
volumetric heat transfer coefficient between gas and pebbles. A model that accounts for the "turbulent"
mixing due to the complex path of the gas through the pebble array will be important. Such models have
so far been developed on the basis of "intuition;" thus experiments are needed. An additional difficulty
for predictive techniques near a converging outlet region is that, as the radius of the bed decreases, the
effects of the surrounding wall increase relatively [Cheng and Hsu 1986]. In the interior an isotropic
approach seems to be appropriate, but near the boundaries of the pebble bed the porosity becomes
strongly nonisotropic. Here the average porosity increases and the flow resistance decreases, resulting in
"channeling" along the boundaries. Little is known about the current macroscopic models that take
account of this effect (e.g., what is their accuracy?). A similar problem becomes important in the context
of flow with heat transfer, because the boundary between pebble bed and a plane wall may act as an
insulation layer. The combined effect of the convergence and wall effect is another unknown that needs
study. Measurements are needed to examine the validity of any models employed and their related
constitutive theories. The INEEL MIR flow system is ideal to investigate these difficulties in detail.

The work planned for the period FY-06 through FY-08 will develop experiments to provide an
understanding of converging porous flows, to assess codes predicting the flow in pebble bed reactors and
to model physically the outflow from pebble beds. Experiments using refractive-index-matching have
already been employed to examine flow and particulate transport in saturated, homogeneous porous
media [Johnston, Dybbs, and Edwards 1975; Cenedese, Cushman, and Moroni 2002]. Usually, the
experiments have been small. Of interest for the current application are the results of Dybbs and Edwards
[1984] who used flow visualization and LDV for flow through hexagonal packed beds of spheres with
refractive-index-matching -- and defined four successive, distinct flow regimes. Despite the wide range
of previous work on flow and heat transfer in porous media and in pebble bed reactors, a number of
important scientific and technological needs remain in order to design and operate NGNP reactors using
pebble bed technology confidently and safely:

*  Quantify the effect of side walls on the reduction of coolant flow resistance due to increased porosity
and the regular arrangement of the spheres (for flow channeling),

»  Evaluate the effects of coolant flow convergence (and divergence) on the stability of coolant flow in
pebble beds,

»  Evaluate effects of converging walls of pebble beds on flow, heat transfer and chemical reactions
»  Physically model typical outflow regions from pebble beds and obtain benchmark measurements

The objectives of the INEEL laboratory study will be to answer the experimental aspects of the
needs identified above for treating the coolant flow and transport through characteristic VHTR pebble bed
geometries—including investigation of a larger range of Peclet and Reynolds numbers than has been
previously obtained but are badly needed. The experimental model and apparatus will be designed and
fabricated using a variety of new and existing equipment. The MIR test section would be filled with
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pebble beds of differing permeabilities consistent with scaling considerations. For refractive index
matching, the current combination of quartz and light mineral oil will be employed.

Flow through the model will be provided by an existing auxiliary flow system with its own
temperature control system for adjusting the refractive index of the oil passing through the porous media.
For optical access, oil flow is maintained in the main loop and its temperature control system is employed
to ensure that the refractive indices are matched from the test section walls to the model wall.
Measurements will be obtained by particle image velocimetry (PIV), laser Doppler velocimetry (LDV),
by video and/or camera recording and by Particle Tracking Velocimetry (PTV) with a Moving Particle
Tracking system (MPT). Instantaneous velocity components will be measured by LDV at fixed positions.
Three experiments will be constructed, two using the MIR flow system and one with airflow for initial
evaluations:

1.  MIR measurements of converging flow in pebble beds
2. Pressure distribution data in air flow corresponding to Experiment (1)
3. Physical modeling of typical outlet region by MIR benchmark measurements

Typical results will include time-resolved, point-wise distributions of the mean velocities, U, V, W,
and their Reynolds stress components for assessment of proposed CFD codes. The applicability of using
oil (or any Newtonian fluid to represent the chosen reactor working fluid), instead of helium, is confirmed
by using equivalent ranges of non-dimensional parameters in non-dimensional forms of the field
equations. Because all of the fluid behavior occurs at low Mach numbers, the flow is treated as
incompressible.

4.3.3 Upper and Lower Plenum Fluid Behavior Experiments

A number of experiments focused on analyzing typical behavior in the lower and upper plenums are
summarized in the following paragraphs. Although the specific lower and upper plenum geometries have
not been specified yet, it is known that the reactor will most probably have both a lower and upper
plenum. Also the final lower and upper plenum geometry designs, whether the reactor is a pebble-bed or
a block-type configuration, will probably have features similar to the baseline design that is being used to
define the preliminary experiments. That is, the upper plenum will probably have accommodations for
inserting control rods and also a number of flow channels will be available for the working fluid to
proceed through the core. Although the aspect ratio (height to diameter) will probably be different than
that chosen, it is probably safe to assume the flow making the transition in the plenum to the core will not
be developed flow. For the lower plenum, there will probably be various flow obstructions in place
whose function is to provide structural support for the core hardware and the flow will likely exit through
a duct such that the core flow will be required to shift direction from downward to a horizontal direction.
Finally, the flow characteristics will likely be quite different on one side of the lower plenum versus the
other side due to the siting of an exit duct on the side of the reactor vessel. Thus, the validation data
produced in the experiments described below are envisioned as scalable, to a degree, to the final design
geometry.

Lower plenum fluid dynamics experiments. Accurate predictions of the thermal mixing in the lower
plenum are needed to predict the temperature distribution of the core outlet duct and its material behavior.
Due to the variation of power and the heat generation across and along the core, the jets from the cooling
channels into the plenum may vary substantially in temperature. If the turbulent mixing of these flows is
incomplete, high temperature gas may impinge on lower plenum surfaces and/or the entrance of the outlet
duct causing potential structural problems. Non-uniformity of the temperature distribution in the gas may
also adversely affect the intermediate heat exchanger or high-pressure turbine. The geometric transition
from the circular cooling channels in the core to the lower plenum is complex, as is the configuration of
the lower plenum itself with its array of posts supporting the core. Plenum studies are pertinent to pebble
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bed reactors as well as prismatic block versions although the details of the lower plenum designs can be
expected to differ. Hence, reliable, accurate data are needed to validate predictive techniques for the flow
and mixing in the plenum.

To partially address the above concerns, an experiment to study fluid dynamics and mixing in a
lower plenum is being designed and will be used to generate data by the end of FY-05. The experiment
design is being undertaken by considering the flow in the lower plenum to consist of multiple jets into a
confined, density-stratified, cross-flow with obstructions. Since the flow converges ultimately to a single
outlet, the hot jets encounter different cross-flow velocities depending on their locations relative to the
outlet. Possible flow routes in the lower plenum of a typical block reactor design concept are shown in
plan view in Figure 4-16. As described in the previous section, the choice of experimental working fluids
may be postponed since whatever the fluid chosen its behavior is related to the NGNP reactor working
fluid using similar operational ranges as determined using non-dimensional parameters in the applicable
non-dimensional field equations.

Possible typical -~ .
flow routes 7 /<

Figure 4-16. Examples of some possible flow paths in the lower plenum of a
typical VHTR block reactor concept.

The large circles represent support posts while the smaller ones identify locations of the inlet ducts
from the cooling channels in the active core. Some bypass flow can also be expected to enter the lower
plenum after passing vertically between the hexagonal graphite blocks both in the core and the reflectors.
The arrows give intuitive examples of some paths the flow could be expected to take through the lower
plenum from the far side to the outlet duct. In some regions the flow pattern would be comparable to
cross-flow over a triangular array of rods as in a shell-and-tube heat exchanger; in other locations the flow
may tend along passageways formed by parallel rows of posts. The flow rate (or Reynolds number)
increases from the right side of the figure to the left as more incoming jets participate.

The jets furthest from the outlet essentially exhaust into stagnant surroundings between the adjacent
posts with the exception of the flow that they induce. If a "hot channel" region is exhausted via one of the
furthest jets, there is concern that its impingement on the floor of the lower plenum may be too hot for the
insulation layer protecting the metallic core support plate below. On the other hand, the last row of jets
before the outlet encounters cross-flow from all the other jets. The "hot streaking" issue pertains
primarily to the entrance of the hot outlet duct to the turbomachinery. If a "hot channel" region exhausts
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through one of the last jets before the outlet duct, there is concern that it may not mix (and thereby cool)
sufficiently before flowing along the metallic outlet duct.

Data from a number of separate effects experiments appear to be available for initial assessment of
the capabilities of CFD codes to handle some individual phenomena in a lower plenum [Schultz, Ball, and
King 2004]. The proposed INEEL MIR studies are aimed at taking the next step, i.e., providing databases
for key coupled phenomena, such as jet interactions with nearby circular posts and with vertical posts in
the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant cross-flow
at the other.

Current prismatic NGNP concepts have been examined to identify proposed flow conditions and
geometries over the range from normal operation to decay heat removal in a pressurized cooldown
[McEligot and McCreery 2004]. Approximate analyses have been applied to determine key non-
dimensional parameters and their magnitudes over this operating range. Flow is expected to be turbulent
with momentum-dominated turbulent jets entering. An approximate analysis was conducted to estimate
when a temperature gradient will stabilize a horizontal turbulent channel flow, thereby leading to reduced
thermal transport near the upper surface. Initial conclusions are that:

*  Buoyancy influences are probably not important at full power,

*  Buoyancy is important at reduced
power (ten per cent), at the side of
the lower plenum away from the
outlet but not near the outlet.

Thus, experiments without
buoyancy effects will provide useful
benchmark data for assessing CFD
codes for some lower plenum flow
conditions.

The purpose of the fluid dynamics
experiments is to develop benchmark
databases for the assessment of CFD
solutions of the momentum equations,
the scalar mixing, and the turbulence
models for typical VHTR plenum
geometries in the limiting case of
negligible buoyancy and constant fluid
properties. The MIR facility and a
sketch of the lower plenum model to be
used in MIR are shown in Figure 4-17.
Using optical techniques in the MIR
facility such as laser Doppler
velocimetry (LDV), measurements can
be obtained in the complex passages
anticipated in the VHTR designs
without disturbing the flow. The
refractive indices of the fluid and the

8 -

model are matched so that there is no Figure 4-17. Matched-Index-of-Refraction flow system and a
optical distortion. The large size conceptual model design to study important flow features in a
provides good spatial and temporal VHTR lower plenum.

resolution. This facility has already
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been used to obtain velocity / turbulence data in scaled fuel channels for a VHTR concept [McCreery et
al. 2003] and an SCWR concept [McEligot et al. 2003].

McEligot and McCreery [2004] described the general characteristics of a typical VHTR lower
plenum and, consequently, the features desired in idealized experiments aimed at assessment of CFD
codes for VHTR applications. The first MIR lower plenum experiment will model flow across an array of
posts—as near the outlet duct or in line with the duct centerline at the opposite side of the reactor -- as
indicated by near horizontal arrows in Figure 4-16. A plan view is shown in Figure 4-18 with open
circles representing the locations of jet inlets and cross hatching indicating the support posts,
approximately to scale. With cross-flow from the right, flow is simulated from across the central region
of the lower plenum (below a central reflector) into the last rows of jets from the active core. For the
region furthest from the outlet, a solid wall can be inserted at the position indicated by the dashed line. In
this case, flow would be completely provided by the jets as at the simulated location. Simulated plenum
dimensions will be based on geometrical scaling of a current prismatic VHTR concept. The second MIR
experiment will simulate flow aligned between a row of posts as suggested by the inclined arrow in
Figure 4-16.
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Figure 4-18. Conceptual design of model for the anticipated first MIR
lower plenum experiment (plan view).

The experiments will be performed using a state-of-the-art particle imaging velocimetry (PIV)
system, to be installed during FY-05. Measurements will be obtained with this PIV system, by laser
Doppler velocimetry (LDV) and possibly by three-dimensional particle tracking velocimetry (3D-PTV)
with a moving particle tracking system. If feasible, preliminary flow visualization of mixing patterns will
be obtained by micro-bubble injection as part of the shakedown tests for the model. Both LDV and PIV
(and PTV) have advantages. They may be considered to be complementary approaches. Visualization of
mean flows and instantaneous measurement of two velocity components should be available via the PIV
system. For flow visualization and for measuring mixing, the PTV should be useful. LDV gives time-
resolved measurements. With PIV (and PTV) one needs many realizations to deduce means and the
higher-order moments. The LDV technique is applied a point at a time; 3-dimensional measurements are
obtained by traversing (taking profiles) in three directions in turbulent flows that are steady in the mean.
Provided the application can be considered to be at least quasi-steady (residence times quicker than other
response times), useful data for assessment can be obtained from such steady flows. Typical results will
include time-resolved, point-wise distributions of the mean velocities and their Reynolds stress
components. The LDV time series will also be available for spectral and wavelet analysis to investigate
potential shedding of eddies from the posts. Further background and information on this experiment are
presented in the report by McEligot and McCreery [2004].

It is planned that the first model (Figure 4-18) will be designed, fabricated and installed in the MIR
test section and that measurements will commence during FY-05. Although this test section is narrow,
wall effects will be minimized by injecting jets from the side and by having a sufficiently large test
section width to pitch ratio. Further measurements and documentation will be conducted during FY-06
and the second model will be designed and fabricated as well. The key deliverables will be documented
databases for CFD code assessment as described above. The approach of this experiment will also be
employed for the later experiments on exit flows in pebble beds, on geometric transitions of plenum inlets
/ outlets and on prototypical geometries identified in the NGNP design and licensing phases.
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Heated flows in lower plenums: A follow-on experiment will treat heated (buoyant) jets entering a
model which simulates key geometric aspects of a lower plenum; an apparatus with gas flow will likely
be employed for this case. Preliminary analyses indicate that injection of buoyant jets could lead to
thermal stratification of hot helium near the upper surface of the plenum in the region away from the
outlet, under reduced power operations and possibly under full power. The objective of this experiment is
to provide benchmark data to assess CFD codes that include treatment of buoyancy forces and gas
property variation in predicting thermal mixing.

Two types of conceptual model designs are being considered, some using gas flow and some using
water. Density differences between hot and cool jets in designs using gas flow are introduced by varying
the gas temperature. Density differences in a water flow apparatus are simulated by varying the density
of the injected water with the addition of soluble material, such as salt to water stored in a reservoir,
before injection. A scaling analysis indicates that the two methods are equivalent for modeling buoyancy
influences in lower plenum flow. Further details of various proposed concepts are discussed in McEligot
and McCreery [2004].

A model concept for heated gas flow is shown as Figure 4-19. The posts and lower plenum walls are
idealized as cylinders positioned between flat walls, somewhat like the plan view in Figure 4-18. The
inlet flow channels, from which the buoyant jets are formed, are represented by tubes attached to the top
wall. Hot and cold gases are injected through these tubes at flow rates and temperatures determined from
scaling analyses. In this case, all flow in the simulated plenum is induced by the incoming jets similar to
the region opposite the plenum outlet in a prismatic VHTR concept.
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Figure 4-19. Schematic diagram of benchmark experiment to simulate effect of
buoyancy on thermal mixing in a lower plenum.

The gas temperature field will be mapped using both a traversing thermal-sensor probe and a thermal

imaging camera. The bottom wall of the apparatus will contain multiple access holes for installing probes
in various positions. Local mean temperatures and temperature fluctuations will be measured using a
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traversing "cold"-wire probe (effectively a fast-response resistance thermometer). The front wall of the
apparatus will consist of a sapphire window that will transmit visible and infrared light for reception in
the thermal imaging camera. The camera will record the thermal images of the cylinder surfaces. The
cylinder material will be a thin-wall ceramic or Pyrex. The thin walls minimize axial conduction heat
transfer, so that the surface temperature distribution will be approximately equal to the local mean gas
temperature. Although maximum gas temperatures will be limited to approximately 500 °C due to
material temperature limits, this limitation poses no restriction of the validity of the validation data since
the data will still be within the proper range of applicable non-dimensional numbers. Additional
measuring techniques under consideration include employing heat pipes to represent the support posts,
embedding heat flux gages on the surfaces and using naphthalene to apply the heat-mass transfer analogy
to infer heat transfer coefficients [Rhee, Yoon and Cho 2003; Angioletti et al. 2003]. With the latter
approach, assessment of CFD codes could be accomplished directly by comparing mass transfer
predictions (solutions of species conservation equations) to the data.

The PIV system to be employed in the MIR experiments will also be ideal for mapping velocity
fields in buoyant flow experiments with air (or water) flow. The PIV system may be extended to measure
velocity and temperature fields (for use in the gas flow experiments) or velocity and concentration fields
(for use in the water flow experiments) simultaneously. Velocity plus temperature (or concentration) may
be measured by using fluorescent seeding particles and two appropriate cameras with narrow-band filters.
One camera, with a filter centered on the laser wavelength, records the velocity information and the other
acquires the fluorescence signal. The latter method, termed planar-laser-induced-fluorescence, relates
signal strength to either temperature or concentration, depending on the seeding material. The capability
of extending the PIV system to include planar-laser-induced-fluorescence for the buoyant mixing
experiments will be evaluated during the acquisition of the PIV system.

The studies for FY-05 include finalizing the conceptual design of the competing experiments for
examining buoyancy effects in a lower plenum, estimating costs and schedules for each and selecting a
path forward. Final design, fabrication and initiation of measurements are planned for FY-06 with most
measurements and documentation occurring in FY-07.

Interactions between hot plumes in an upper plenum and parallel flow instabilities. The mixing of
hot plumes in the upper plenum of a gas-cooled reactor is of concern during a pressurized cooldown
[McEligot et al. 2002]. These plumes come from up-flow in the not coolant channels during natural
circulation in the core and may impinge on the reactor vessel upper plenum structure and control rod
apparatus causing localized hot spots that may be prone to failure. The flow rates and temperatures of the
plumes may be affected by laminar flow instability caused by variations in the viscosity with temperature
[Reshotko 1967] at the low Reynolds numbers in these channels and thus may possibly cause flow
“choking.” A planned experiment on interactions between hot plumes and parallel flow instabilities will
examine this problem.

The envisioned experiment will produce a scaled fluid behavior simulation of plumes moving
upwards from the hot core cooling channels, of the natural circulation development in the upper plenum,
and of the downward movement of upper plenum inventory into the cooler channels in route to the lower
plenum. Sufficient instrumentation will be used to characterize the flow behavior for CFD validation
data sets.
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4.3.4 Air Ingress-Related Experiments

To provide data required to accurately treat heat transfer and wall friction of air-helium mixtures
during air ingress events, experiments are planned during FY-06 and FY-07. For accident scenarios
involving air ingress, the heavier air will displace the helium used as the normal working fluid. However,
a consequence of this displacement process will be a mixture of the two gases in some components. As
the concentration of a gas mixture changes, so do its properties. It is known that the variation of thermal
conductivity and specific heat versus concentration will lead to a minimum in the Prandtl number at an
intermediate concentration, where the Prandtl number realizes a value between that for liquid metals and
common gases. Thus the applicability of typical correlations and turbulence models in these cases are
open to question. Taylor, Bauer, and McEligot [1988] have shown that some of the most popular
correlations over-predict convective heat transfer for other binary gas mixtures at high Reynolds numbers.
Still needed are data for forced and mixed convection in low-Reynolds-number turbulent flows. Graphite
oxidation data are available from other sources [Schultz, Ball, & King 2004].

The objective of this simple experiment will be to obtain benchmark data for the preliminary
assessment of CFD turbulence models and systems codes for forced and mixed convection in low-
Reynolds-number turbulent flows occurring during air ingress or resulting natural circulation. Wall
temperatures and pressure drops will be measured for specified wall heat flux and inlet conditions with
apparatus comparable to that employed by Taylor, Bauer and McEligot but modified to achieve lower
relative heat losses at the lower Reynolds numbers. Experimental procedures employed will also
correspond to those of Taylor, Bauer and McEligot. System pressure and test section diameter will be
adjusted to provide the necessary range of non-dimensional parameters. With these data, turbulence
models may be evaluated by comparison of wall temperature and static pressure distributions.

Figure 4-13 shows an example of this type of comparison.

4.3.5 Larger Scale Vessel Experiments

Code development and assessment activities for previous reactor designs have required integral
experiments at various scales to verify that small-scale laboratory experiments, experiments using
simulated fluids, and experiments at non-rated conditions have been properly scaled for the full-scale
plant. This premise holds true for any NGNP design. While some integral data may become available
from the HTTR and the HTR-10 research reactors, there will undoubtedly be a data gap when considering
measurements needed to validate calculations from coupled CFD/systems codes for the final NGNP
reactor geometry. Therefore, a larger scaled vessel experiment will be performed to provide scaled data
directly applicable to the final NGNP design and quantify potential distortions from data of small-scale
facilities not apparent in the scaling studies.

A highly instrumented, geometrically correct, larger-scale simulator will be constructed consisting of
an NGNP upper plenum, core simulator, lower plenum, hot outlet duct and turbine inlet channel.
Geometry will be defined by the best available information on the actual design. The scale required will
be determined from previous experimental results and available literature and from phenomena expected
to occur. Size of the order of 1/4 to 1/3-scale is envisioned with lower pressures and temperatures than
design targets. The core simulator may or may not be electrically heated. Overall instrumentation will be
sufficient to provide detailed local data for CFD code assessment, as well as global data for systems code
assessment. The facility will be capable of simulating both operational conditions and accident scenarios.
Issues that can be studied for operational conditions include the influence of various bypass conditions on
the system operational envelope, the progression of mixing and turbulence of the helium as it passes from
the lower plenum through the hot outlet duct to the turbine inlet and the influence of various lower
plenum configurations on the system performance. Accident conditions that can be examined include the
influence of natural circulation on the thermal behavior of the system during depressurized cooldown.
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4.3.6 Integral Reactor Experiments: HTTR and HTR-10

Presently there are two operational gas-cooled test reactors: the High Temperature Gas-Cooled
Reactor—10 (HTR-10) and the High Temperature Test Reactor (HTTR). These experiments are located
in Beijing, China at the Institute of Nuclear Energy Technology (INET) and in Oarai, Japan at the Japan
Atomic Energy Research Institute (JAERI) respectively. Integral experiments are the only experimental
sources that may be able to produce the complex interactions between dominant phenomena identified in
the NGNP system specific PIRT. Therefore, the integral experiments are essential for systems analysis
and CFD code validation studies. Undoubtedly data from both the HTTR and the HTR-10 will be
included in the calculational matrix required for plant licensing by the U.S. Nuclear Regulatory
Commission.

Sketches of the two facilities are shown in Figures 4-20 and 4-21 below. Validation studies are
needed using the data generated at these facilities to date. In addition, arrangements will be made to
enable the NGNP Program to collaborate with INET and JAERI such that specific experiments may be
specified that can be linked directly to the NGNP preliminary and final design PIRTs.
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Proceedings, Beijing, China, March, 2001).
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HTR-10. The HTR-10 is a 10 MW pebble bed high temperature gas-cooled reactor that became
operational in 2000. INET plans to perform a spectrum of experiments of essential to the NGNP Project.
Among the experiments may be a LOCA, a pressurized conduction cooldown experiment, a rod ejection
experiment, and an anticipated transient without scram.

The HTR-10 reactor vessel (see Figure 4-20) is approximately 11.2 m in height and contains a 1.8 m
diameter core that is 1.97 m high with ~27000 pebbles. The reactor was designed to operate at 10 MWt.
The average power density is 2 MW/m® and the core inlet temperature is 250 to 300 °C and the core outlet
temperature will range from 700 to 900 °C. Benchmark experiments performed in the HTR-10 are
available via the IAEA [Sun & Gao 2003].

HTTR. The HTTR Project is centered on the 30 MWt prismatic engineering test reactor (see Figure
4-21). However, the HTTR Project also has a number of support projects that provide useful data (e.g.,
the Vessel Cooling System test series based on cooling panels inside a vessel containing heating elements
and the heat transfer studies based on the hemispheres heated from below and cooled using natural
convection). The Japan Atomic Energy Research Institute’s (JAERI) plans, to perform a spectrum of
HTTR experiments that may include a LOCA, a pressurized conduction cooldown experiment, a rod
ejection experiment, and an anticipated transient without scram.

The HTTR became operational in 1998. The reactor vessel is 13.2 m tall (inner dimension) and has
a 5.5 m inner diameter. The core has 30 fuel columns and 7 control rod guide columns. There are 12
replaceable reflector columns and 9 control rod guide columns. The HTTR is fitted with a reactor cavity
cooling system (RCCS). The HTTR operates at 4 MPa with a core inlet temperature of 395 °C and outlet
temperature of 850 °C [Sikusa 2000]. However, it is known that the HTTR does not have a full set of
instrumentation. Thus, additional instrumentation is required to obtain the needed data.

Supporting experiments include a series of 6 tests performed to simulate the heat transfer to the
RCCS cooling panels [see IAEA, 2000]. The experiments are summarized in Table 4-4.

Table 4-4. RCCS Experiments: HTTR Project

Experiment I IT 111 v \% Via Vib
Gas Vacuum helium | nitrogen helium helium helium helium
Presssure (MPa) | 1.3x10° [ 0.7 1.1 0.47 0.64 0.96 0.98
Power (kW) 13.1 28.8 93.9 77.5 29.7 2.6 8.0
Cooling panel water water water water air air air

Cooling panels were placed inside a pressure vessel and experiments were performed by varying the
gas in the pressure vessel to change the natural convection characteristics; thus Experiment I was
performed with a vacuum so no natural convection would occur and the only heat transfer from the
heaters to the cooling panels would be radiation. Experiment III was performed with nitrogen and the
remainder of the experiments were performed using helium. Also the cooling medium in the cooling
panels was run with water for 4 experiments and air with 3 experiments. The power level was changed as
shown.

A further example of the types of experiments performed in the HTTR project include a series of
experiments making use of a 0.3 m hemisphere that was heated from below while the natural circulation
characteristics were measured. This experiment was designed provide validation data relevant to
calculating natural circulation in passive systems for CFD and systems analysis software.
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4.3.7

Reactor Cavity Cooling System Experiments

Reactor Cavity Cooling System (RCCS) research is essential since the heat transfer from the reactor
pressure vessel to the RCCS is a key ingredient in defining the peak core and vessel wall temperatures
during postulated accident conditions. Two RCCS experimental efforts are presently underway. The
first, at ANL, aims to characterize the heat removal capabilities of an air-cooled RCCS. The second, at
the Seoul National University, aims to characterize the heat removal capabilities of a water-cooled RCCS.

ANL air-cooled RCCS. The objective of this task is to acquire the model/code validation data for
natural convection and radiation heat transfer in the reactor cavity and the reactor cavity cooling system
by performing experiments in the ANL Natural Convection Shutdown Heat Removal Test Facility
(NSTF) shown in Figure 4-22. The first task will be to determine the scalability of existing data from the

ANL RCCS simulator to a “typical” air-cooled
VHTR RCCS design. The scaling studies will
identify the important non-dimensional
parameters for each separate-effects study. Based
on the results of the scaling study, the range of
experiment conditions will be determined as well
as the appropriate experiment scale and
appropriate fluids to be used that most effectively
simulate full-scale system behavior.

The R&D will include the identification of
RCCS design candidates from both the pebble-
bed and prismatic options and the range of
thermal-hydraulic conditions for normal operating
and accident events. An instrumentation strategy
will be developed to assure that adequately
detailed velocity and turbulence profiles are
obtained, as well as surface pressure and/or
temperature distributions for the validation of
multidimensional simulation tools. Based on the
results of these feasibility studies, a detailed
engineering modification plan for the ANL RCCS
facility will be developed. Next, a test matrix will
be developed, and the indicated test program will
be performed. The ANL RCCS experimental
results will capture key phenomena expected to
be present in the RCCS and provide data of
sufficient resolution for development and
assessment of applicable CFD and system codes.

Seoul National University water-cooled
RCCS. A water-cooled RCCS design may be
preferred since its heat removal capability is
larger per unit heat transfer area than a
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Figure 4-22. Schematic of ANL Natural
Convection Shutdown Heat Removal Test
Facility.

comparable air-cooled design. Hence a water-cooled design would be more desirable if a high-pressure
containment is required for the NGNP instead of a low-pressure confinement system.
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The SNU RCCS facility consists of three parts: the reactor vessel, an air cavity, and a water pool
(see Figure 4-23). The SNU experiments are being performed using various gas mixtures in the gap and
with various water pool elevations. The temperatures on the various surfaces are measured together with
the surface emissivities and water pool characteristics (temperature as a function of position, elevation,
etc). Heat from the reactor vessel is transferred to the RCCS by radiation, natural convection, and
conduction. The data provided by these experiments are the basis for validation CFD calculations
specific to the behavior of water-cooled RCCS.

Cavity

Upper Tank

Air Inlet

a. Schematic of test facility b. Photograph of test facility
Figure 4-23. SNU water-cooled RCCS experiment.

4.3.8 Thermal-Hydraulic Design Methods Development, Validation, and
Analysis - Introduction

The thermal-hydraulics design, performance analysis, and ultimately the licensing of the NGNP will
require the use of validated computer codes for modeling the reactor’s behavior during normal operation,
anticipated transients, and accident conditions. The modeling strategy chosen for this effort is to make
use of both thermal-hydraulic systems analysis codes and computational fluid dynamics (CFD) codes.
The reference codes chosen are the RELAP5-3D systems code and the Fluent and STAR-CD CFD codes®.
However, other codes, such as GRSAC, Abaqus, and NPHASE will be used to supplement the reference
codes.

A systems analysis code is needed to model the integrated behavior of the entire NGNP system,
including the interactive coupling of the reactor with the hydrogen and power producing components,
including the intermediate heat exchanger, turbine, compressor, reheaters, etc.

CFD software is needed to analyze or qualify simulated fluid behavior wherever two- or three-
dimensional fluid behavior is expected, particularly in plenums and cavities. Regions of applicability for
the NGNP include the upper and lower plenums, the hot duct and the intermediate heat exchanger or

¢ RELAP5-3D includes all the working fluids presently being considered for the NGNP together with their associated constitutive
models. Fluent is a commercial CFD code that was selected on the basis of its extensive usage and validation history and the
commitment of its vendor to the NGNP program. During FY-02 through FY-04 a coupling capability was implemented to link
RELAPS5-3D models to a Fluent model. Fluent is being used by INL and STAR-CD is being used by ANL.
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turbine inlet region as well as the reactor cavity cooling system. Other NGNP regions will be identified
during the upcoming PIRT studies.

Although two commercial CFD reference codes (Fluent and STAR-CD) are presently being used and
a university-developed” or a national laboratory-developed® CFD code may also be used, it is suspected
that none of them will meet all of the NGNP analysis requirements and thus some modifications will be
required. Consequently, a three-track approach will be used to meet the CFD analysis needs for the
NGNP:

Track 1: validation of currently available CFD software,
Track 2: modification of existing tools as necessary, and

Track 3: pursuit of R&D to obtain more efficient and effective simulation tools that may take
several years to mature.

The near-term thermal-hydraulics tasks follow the first track: validating existing tools. As the CFD
tools are validated, it may become necessary to add new turbulence models or pursue other modeling
strategies, such as Lattice-Boltzmann, Large Eddy Simulation (LES) or Direct Numerical Simulation
(DNS), thus following Track 2. Track 3 is designed to ensure that needed simulation tools will be
available in the future that are
more efficient and capable than
existing tools. This approach

Use RANS
Approximation

is outlined in Figure 4-24.

Following the strategy 2a. “Develop” commercial CFD }
outlined in the above two . No code (Fluen, Star-CD)
paragraphs, the commercial vallid:?tign 2b. “Develop™ national laboratory ‘
CFD codes Fluent (at INL) and ::azgn‘jl‘;l’:? | or university CFD code g
STAR-CD (at ANL) will ' T CPD code orodioed By NGND
R . . code produced by or g
initially be validated and N Giomzmiiion TV Draes >

developed for the near-term
thermal-hydraulics tasks
(Tracks 1 and 2). As
deficiencies are isolated that
cannot be addressed using the
commercial CFD codes,
experimental CFD software
such as NPHASE and CFDLib
will be tested and used to

4. Proceed with analysis

Figure 4-24. Approach for achieving validation
objective for CFD.

f An advanced next-generation CFD solver for both single-phase and multiphase flows developed at Rensselaer Polytechnic
Institute. A new upgraded version of this code is currently under development via the sponsorship of the U.S. Nuclear
Regulatory Commission for future reactor safety analyses of next-generation reactors [Antal, et al 2000].

¢ CFDLib is the Los Alamos Computational Fluid Dynamics Library. This is a collection of codes. The CFDLib
collection is a repository for all the numerical methodologies developed in the Fluid Dynamics Group (T3) of
LANL's Theoretical Division. For example, the MAC method (due to Harlow & Welch), the ALE method (Hirt et
al.), the multifluid ICE method (Harlow & Amsden), and the FLIP method (Brackbill & Ruppel) are all schemes that
reside in the CFDLIb collection. In recent years the CFDLIib collection has been made into a sort of 'open-source’
project, with contributors from all over the academic world as well as many other divisions of LANL and other US
National Laboratories. For multiphase flow, the original capabilities of K-FIX (Rivard & Torrey) are contained in
CFDLib [Kashiwa et al. 1993, 1994].
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analyze the more difficult tasks.

Because the spectrum of turbulent mixing behaviors that will be present in the plenums and flow
passages are key phenomena that require evaluation, a significant research effort is aimed at the
identification of the proper model and approach. One of the more common approaches is based on taking
an average of the incompressible Navier-Stokes equation to obtain the Reynolds-Averaged Navier-Stokes
equations (RANS) as described in Speziale & So [1998]. A newer approach toward predicting the
ensemble average of the fluid velocity is called large-eddy simulation (LES) “...in which the Navier-
Stokes equations are ‘filtered’ instead of averaged. This generates equations for the large flow scales yet
uses a ‘subgrid’ model to capture the effect of the smaller scales” [Bernard et al. 1998, p. 13-3]. Finally,
the direct numerical simulation (DNS) approach of representing the Navier-Stokes equations enables all
turbulence scales to be resolved.

The key technical issues identified by the first-cut PIRT, as summarized in Table 4-3, are the basis
for defining the code development, validation, and analysis R&D program. The following sections are
organized on the basis of the five key technical issues listed below:

Core heat transfer

Lower and upper plenum coolant flow
Reactor Cavity Cooling System

Air ingress and Fission Product Release
Integral system behavior

Nk W=

4.3.9 Core Heat Transfer Model Validation, Development, and Analyses

Both systems analysis and CFD software will be used to analyze the core heat transfer. CFD is
presently being used to calculate the maximum coolant jet temperature into the lower plenum for a
baseline prismatic reactor. Systems analysis is used to analyze the distribution of the helium in the core
and also the influence of the bypass on the overall core pressure distribution.

Convective heat transfer during Normal Operation. During normal operation a non-uniform power
and flow distribution in the core will give rise to “hot channels”. Helium, as a working fluid, experiences
an increase in viscosity that is proportional to the absolute temperature raised to the 0.7 power. At the
same time, the heat transfer coefficient decreases. Hence, helium flow through hot channels in the core
region (whether a prismatic or pebble-bed core) will tend to decrease, while the flow in cooler channels
will tend to increase due to this effect. Analyses are required to determine the maximum fuel temperature
during normal operation, the maximum variation in channel outlet temperatures exiting the core into the
lower plenum, and the effect of redistributing the flow between the channels. Also, analyses are required
to study the behavior of variations in the specified design—such as inlet orificing.

CFD analyses, already underway in FY-05, are aimed at investigating the influence of the turbulence
in the hottest cooling channel on the heat transfer and hence the subsequent exit temperature. The
maximum exit temperature is instrumental in determining the potential for local hot spots in the lower
plenum and various structural components as the gas moves to the intermediate heat exchanger or turbine
inlets. Also, the potential for “hot-streaking” at the intermediate heat exchanger or turbine inlets is linked
to the peak-temperature coolant jets that enter the lower plenum. Although analyses have been performed
in FY-04 and -05, additional analyses will be performed in subsequent years to evaluate additional
geometry configurations, geometry/manufacturing dimensional uncertainties, and conditions once the
CFD software are better validated. Experimental data to be used for validation include heated
experiments (section 4.3.2) to evaluate the channel behavior under conditions where asymmetrical heat
transfer loads are imposed on cooling channels (FY-06 & -07).

102



Systems analysis calculations to consider the redistribution of coolant channel flow as a function of
the local peaking factors (i.e., hot channel flow) and variations in bypass flow as a function of core life
will be performed for the various NGNP reactor design stages. These calculations are necessary to
establish the temperature characteristics of the system and the environmental losses during operational
conditions. The core heat transfer will be considered in conjunction with the system calculations
described in Section 4.3.13—including the effects of fuel depletion on power distribution and control rod
insertion.

Convective heat transfer during PCC. Core flow behavior following a PCC event will be
accompanied by internal vessel recirculation with flow upward through the core in hotter coolant channels
and downward through the core in cooler coolant channels and bypass paths. Natural convective heat
transfer within the core will include several regimes not currently available in RELAP5-3D. Accurately
calculating core fuel temperatures will depend on this convective heat transfer as well as the conduction
and thermal radiation that will transfer heat out of the vessel to the RCCS.

CFD validation calculations will be performed based on available mixed convection data [McEligot,
Magee, and Leppert 1965; Perkins and McEligot 1975; Reynolds 1968; Shumway 1969; Vilemas and
Poskas 1999; Bae et al. 2004] to demonstrate the capability of the CFD tools to adequately calculate the
appropriate fluid and heat transfer behavior. Following validation, a CFD code may be used during FY-
07 to evaluate the core heat transfer in conjunction with the flow distributions in the lower and upper
plenums to calculate the potential for localized hot spots in the vessel upper head and control rod
apparatus (see Section 4.3.10).

Also, the correlations developed on the basis of available mixed convection data [McEligot, Magee,
and Leppert 1965; Perkins and McEligot 1975; Reynolds 1968; Shumway 1969; Vilemas and Poskas
1999; Bae et al. 2004] will be evaluated for applicability and installed in the systems analysis software.
The validation calculations will demonstrate the capability of RELAPS5-3D to adequately represent these
mixed convection regimes (FY-05). Following confirmation of the code’s capability to perform such
calculations RELAPS5-3D will be coupled with a CFD code to enable the modeling of the core flow into
the upper plenum and then down through the cooler channels to the lower plenum.

Axial and radial conduction during PCC and DCC. Decay heat removal following a PCC or DCC
event will be accompanied in part by axial as well as radial heat transfer within the core. The decay heat
removal rate is a key ingredient in determining the peak fuel temperature and the peak structural
temperatures in the reactor vessel. Hence confirmation of the software’s capability to calculate this
behavior is crucial. Therefore, this R&D consists of four parts: (i) revision of the heat structure modeling
capability of RELAPS, (ii) validation calculations based on the expected behavior of a prismatic reactor
during a conduction cooldown event, (iii) validation calculations based on the AVR experimental data,
and (iv) validation calculation based on the Sana I experimental data.

Revision of existing RELAP5-3D heat structures. RELAP5-3D only calculates heat transfer
between heat structures in the radial direction (via contact conductance as well as thermal radiation). In
either the prismatic or pebble bed core design, the core structure will be modeled using a series of
RELAPS-3D heat structures. Therefore, this task will implement the same heat transfer mechanisms in
the axial direction (FY-06).
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Figure 4-26. Prismatic block reactor core primitive.

For the prismatic block core designs
(an example of which is shown Figure 4-25)
this modeling approach assumes each
graphite block has a uniform temperature,
which should prove adequate for modeling
core behavior during PCC and DCC events.
However, a more detailed model is needed
to capture the elements of the core geometry
and predict the temperature response at the
smallest scale, called the "primitive."
Figure 4-26 shows the primitive generally
used for calculating heat transfer in
prismatic block reactors. The primitive
forms the link between a RELAP5-3D
model that represents each block in the
prismatic reactor and studies that will be
done using a code such as Fluent or Abaqus
to subdivide each block into a large number
of mesh cells to obtain a detailed
temperature distribution within the blocks
(FY-06).

It is planned to use data from the
HTTR facility to perform the needed
validation calculations for the prismatic
block type VHTR. The HTTR, described in
Section 4.3.6, is an operating prismatic test
reactor. Both PCC and DCC scenarios are
planned for the HTTR in the future. Data
from these experiments (if the facility is
appropriately instrumented) will enable a
thorough validation of the systems analysis
code’s calculational capability (FY-07).

Data from the AVR German pebble
bed reactor will be used to validate core
heat transfer modeling in pebble bed
VHTRs. The reactor operated from 1967 to
1988 and was the only nuclear power plant
that was intentionally subjected to a loss-of-
coolant event without emergency cooling
[Kriiger et al. 1991]. The data includes core
power and temperatures measured at
various locations in the reactor vessel

including the reflectors, reactor shroud, inner vessel, and within instrumented pebbles. The data are
considered valuable for qualitative validation of pebble bed modeling. The validation effort and will
provide conclusions on the capability of a coupled RELAP5-3D/Fluent model to properly predict pebble

bed system behavior (FY-08).
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Data from the Sana-I facility shown in Figure 4-27
[IAEA 2000] will also provide for validation of the
pebble bed modeling. The test rig was designed to
study the heat transfer mechanisms in a pebble bed core
filled with 9500 graphite pebbles (diameter = 6 cm) and
to provide the basis for validating the models required
to determine whether sufficient energy can be
transferred to the environment to prevent the fuel from
becoming damaged following failure of all heat sinks
with a simultaneous depressurization. These data will
be used to validate RELAPS5-3D through simulations of
the experiment (FY-08).

Core bypass. Preliminary studies have shown that
the amount of core bypass flow in the prismatic core
design (due to gaps between graphite blocks in both the
core region and the reflectors) can influence peak fuel
temperatures during a DCC event [MacDonald et al.
2003]. Follow-on analyses with more refined models
need to be performed to understand the tolerance of the
design to changes in bypass flow that might occur over
time due to structural changes in the graphite blocks.
Reports, based on RELAPS5-3D analyses, will be issued
at each of the design stages documenting this
sensitivity.

4.3.10 Upper & Lower Plenum Flow
Mixing Validations, Development,
and Analyses

Lower plenum. Introduction of the hot jets from

the core into the lower plenum creates the potential for
the hottest jet streams to impinge on the lower plenum

Thermocouple
Entrance

=

Ll

=i

1y ]

N T T T

Figure 4-27. SANA-I facility.

structural surfaces both in regions of low cross-flow and also to move via flow streams passing through
low mixing regions into the hot duct and then to the intermediate heat exchanger or turbine inlets. Given
that the hottest jets will have exit temperatures well in excess of the average exit temperature, a rigorous,
accurate evaluation of the peak temperature jet behavior and the interactions of these jets with adjacent
jets and especially their interactions with the lower plenum structural materials are crucial. Figure 4-28
shows a preliminary calculation of the mixing behavior in the lower plenum of a representative advanced
gas-cooled reactor design (produced in the collaborative effort between Fluent, General Atomics, and
INL). To calculate mixing in the lower plenum, the validation effort will be focused on CFD software.
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Figure 4-28. Preliminary calculation of mixing in prismatic reactor lower plenum.
Courtesy of Fluent, Inc and General Atomics Corp.

To validate the CFD model that will be used to calculate mixing in the lower plenum, a number of

experimental validation sets will be used:

Benchmark calculations of mixing behavior in the lower plenum: The turbulent intensity and
turbulence as a function of location in the NGNP design lower plenum will be calculated and
evaluated. The benchmark calculation will be used as a frame-of-reference for the scaled lower
plenum experiments and jet/cross-flow data, e.g., MIR, jet and cross-flow interactions data (FY-05).
In addition to serving as an experiment design tool, this calculation serves as a baseline that will be
used as a basis of comparison or starting point for the validation. As the CFD code is validated and a
more detailed understanding of the mixing behavior is obtained, the baseline calculation will be
updated and studied in more detail.

Matched-index-of-refraction (MIR) experiments: CFD models of the MIR experiments described in
Section 4.3.3 will be constructed and validation calculations will be performed. The emphasis will
be on evaluating the turbulence models and relating the scaled experiments to the fluid behavior
postulated to occur in the NGNP design. (FY-05 to FY-07)

Heated experiments: Since the MIR experiments are isothermal they will not reveal the buoyancy
contribution due to temperature variations in both the inlet jets and cross-flow will be evaluated. The
evaluation and validation calculations will be performed by constructing a CFD model of the
experiment (see Figure 4-19). The turbulence intensity and turbulence behavior as a function of
location will be compared with data. (FY-05 to FY-08)

Benchmark validation studies based on jet and cross-flow data [Schultz, Ball, & King 2004]: Data
describing the general jet and cross-flow phenomena, including the interactions between jets and
cross-flow, will be used to perform separate-effects validation studies of the Fluent code (FY-05).

Upper plenum flow. Following a PCC event internal vessel recirculation flow will occur in which

helium coolant will flow upward through the core in the hotter coolant channels and downward through
the core in the cooler coolant channels and bypass paths. Mixing of these flows will take place in the
lower and upper plenums. The recirculation will cause heating of the upper plenum structure and the
local temperatures may approach the limiting values for the structural materials or the control rod
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apparatus. Validation calculations are required to ensure NGNP reactor analyses of the vendor’s design
give reasonable results. The coupled RELAPS-3D/Fluent model will be used to analyze the PCC event.
Validation of the modeling approach will be accomplished by using the data from the planned upper
plenum plume experiments (Section 4.3.3) (FY-09).

4.3.11 Reactor Cavity Cooling System Validations, Development, and Analyses

The reactor cavity cooling system (RCCS) is the primary system for transferring the core residual
and decay heat to the environment following a PCC or DCC event. Consequently, the RCCS plays an
important role in determining the core temperature distribution, the peak fuel temperatures, and the peak
structural member temperatures for a given design and power rating. Also, since the RCCS operates in
the “null” mode during rated operational conditions with a noticeable fraction of the generated power
transferred to the environment, the RCCS has some influence on the plant efficiency and operational
conditions (core temperature distributions, etc). Thus, the software tools must be capable of accurately
predicting the system behavior under all conditions.

The RCCS design will be dependent in large measure on whether a low-pressure filtered and vented
system confinement is allowable or a high-pressure containment is required by the regulators. If a
confinement is allowable the RCCS may likely be an air-cooled RCCS whereas if a containment is
required the RCCS will likely be a water-cooled RCCS. In either case the largest fraction of the energy
transferred from the reactor vessel to the reactor cavity walls occurs through radiation heat transfer. Heat
transfer from the walls to the environment may be either through a natural circulation-driven air-cooled
duct system or through a water-cooled sleeve. A smaller fraction of the energy transferred to the reactor
cavity walls occurs through convective heat transfer via natural circulation of the gases enclosed in the
reactor cavity. A validated model is required to analyze the heat transfer via radiation and convection
from the reactor vessel to the environment. A conceptual plan view of such a system is shown in
Figure 4-29.

Reactor Vessel Risers Downcomer

To validate a model’s capability to calculate the [
RCCS behavior, the following experimental (I
validations are planned: ]

ANL air-cooled RCCS (see Section 4.3.3). The @
key objective of this effort is to validate the capability R
of the CFD software to reasonably calculate the I
dominant heat transfer modes in a scaled air-cooled —
RCCS. The computer code validation effort will —
consist of development of a model of the experimental
matrix, performance of pre-experimental design Figure 4-29. Concept for an RCCS
calculations, performance of blind calculations, and design.

post-calculational analysis. The experimental matrix

will cover the NGNP normal operational conditions as well as the expected depressurized conduction
cooldown and pressurized conduction cooldown accident conditions. A set of either STAR-CD or
FLUENT models for the selected candidate RCCS systems will be defined and the corresponding CFD
calculations for a selected set of driving boundary conditions. The STAR-CD or Fluent CFD codes will
be validated against the experimental database for the prediction of the RCCS performance under
operational conditions and depressurized conduction cooldown and pressurized conduction cooldown
accident conditions. In addition, if feasible, the data will be used to formulate a heat transfer correlation
for use in RELAPS5-3D to enable a more simplified approach to modeling the RCCS (FY-08 to -10).

Seoul National University water-cooled RCCS (see Figure 4-23). A similar validation effort, to
that described above for the ANL air-cooled RCCS experiments, will be performed. However, because
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some two-phase behavior will likely occur in the water-filled thermal sleeve, RELAPS5-3D or the CFD
code NPHASE will be used (FY-09).

HTTR RCCS separate-effects. Validation will be performed using existing experimental data from
the HTTR mockup experiments [IAEA, 2000]. Data were obtained in a series of six tests performed to
simulate the heat transfer to the RCCS cooling panels.

For these experiments, cooling panels were placed

inside a pressure vessel (Figure 4-30) and the gas in the Upper Cooing Ponel —Thermal Insltion
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Figure 4-30. HTTR mockup facility.

Air ingress scenarios will be calculated using two
approaches: (i) using RELAP5-3D alone and (ii) using
Fluent coupled to RELAPS5-3D. Because the air that diffuses into the reactor lower plenum will probably
do so non-uniformly, a CFD tool will be required to produce a three-dimensional air distribution in the
lower plenum using first-principles. Hence it is essential to validate the capability of the CFD software to
calculate air diffusing into a plenum occupied by helium. In the event that the air distribution into the
lower plenum can be shown to be calculable using a one-dimensional systems analysis, the use of
RELAP5-3D alone may be adequate. Thus it is also essential to validate the capability of RELAPS5-3D to
perform the air ingress calculation. If a CFD analysis of air diffusion into the lower plenum is required,
then the CFD software will be used coupled to RELAP5-3D since RELAPS5-3D will have the capability to
calculate exothermic graphite oxidation.

RELAPS-3D currently has a two-species diffusion model (helium and nitrogen). The model will be
extended to a multi-species model. In addition, a model will be implemented for the graphite oxidation,
which will represent both the accompanying heat generation and mass consumption of oxygen and
generation of CO and CO,. A report documenting the verification of these models will be issued (FY-
06). Validation studies, for both the CFD software and RELAPS5-3D, that are planned include:
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»  Takeda & Hishida Experiments: The experiments performed by Takeda and Hishida centered on a
reverse U-shaped tube configuration and a simple model of the HTTR. The studies will focus on the
flow behavior of multi-component gas mixtures due to molecular diffusion and the natural
circulation of the multi-component gas mixture (FY-07).

*  NACOK Experiment: The NACOK experiments [Schaaf et al. 1997] were designed to model a
representative section of a VHTR core undergoing the effects of air ingression following a LOCA.
Therefore, the data from these experiments are suitable for validating diffusion modeling capability.
A RELAPS5-3D and Fluent model will be constructed and validation calculations will be performed.
A report documenting the validation will be issued effort and will provide conclusions on the
capability of the codes to properly predict system behavior (FY-08).

*  Helium/Air Heat Transfer Experiments: Data from experiments planned for FY-06 to -07 will
provide the basis for validation of heat transfer and pressure drop in the core for mixtures of air and
helium (FY-08).

The DCC event also creates the potential for the release of fission products into the confinement or
containment. The release of fission products from the fuel (including radioactive dust in the case of the
pebble bed reactor), transport within the coolant system and confinement, and the deposition of these
products must be calculable. To provide these capabilities in an overall systems code approach, the
inherent models in PARFUME (fission product release) will be augmented by the capabilities of a code
such as VICTORIA (fission product transport and deposition). These codes will be linked to RELAP5-
3D in FY-10 using the existing PVMEXEC protocol. A report will be issued demonstrating the
verification of the coupled models (FY-10).

4.3.13 Integral System Behavior Validations, Development, and Analyses

The ultimate objective of the NGNP Program software validation and qualification effort is to
demonstrate the capability of the required software to produce calculations that describe the NGNP
integral system behavior with acceptable accuracy for operational conditions and off-normal or accident
conditions. The focus of these essential calculations is usually the location and magnitude of the peak
fuel temperatures and peak structural temperatures, although other variables will be identified that are
important, e.g., peak structural loads, peak power under adverse conditions and operational conditions,
conditions that lead to adverse operating conditions for the intermediate heat exchanger or the turbine,
potentially damaging oscillatory conditions, etc. Because the NGNP reactor has many components, the
net system behavior is described properly when all of the system component interactions are accurately
calculated. The NGNP system model will require both development and validation. Development tasks
consist of:

*  Concurrent Fluent Models: A coupled RELAP5-3D/Fluent model will be used to model the reactor
vessel for the PCC events, in which Fluent will model the inlet and outlet plenums and RELAP5-3D
will model the core region. Fluent is needed for the upper and lower plenum modeling to capture the
three-dimensional flow patterns that will occur in these regions as coolant circulates within the
vessel. To accomplish this, the present capability to link RELAP5-3D models to Fluent models
using the coupling protocol will be extended to enable two separate Fluent models communicating
with the RELAPS5-3D model. A report will be issued documenting the dual coupling capability in
FY-07.

*  Coupled Neutronics: It appears likely that it may be necessary to model part of the core region
(prismatic or pebble bed) using Fluent, and the remainder with RELAP5-3D so as to enable a direct
comparison of coolant channel flow behavior between the codes under the same conditions, i.e., a
code-to-code validation. This is presently possible except for the exchange of neutronic data
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between the codes—although the mechanism to exchange neutronic data has been developed. This
task will extend the coupling capability to allow neutronic data to be exchanged between the codes
during each time step. A report will be issued demonstrating this capability in FY-09.

*  RELAP5-3D/PEBBED Linkage: PEBBED will be the neutronic module for the pebble bed reactor.
This task will link PEBBED with RELAP5-3D providing a complete thermal hydraulic and
neutronic systems analysis package, assuming a pebble bed design has been chosen by then. The
linkage strategy will be the same as that currently employed with the NESTLE code imbedded in
RELAPS5-3D. A report will be issued documenting the verification of the linkage in FY-09.

*  Balance-of-Plant Components: Data will be acquired that are representative for turbines,
compressors, and reheaters planned for use in the NGNP. Models of these components will be
developed to perform the necessary validation. RELAP5-3D already contains the modeling elements
required for these components. The design data are needed to build the system-wide NGNP model
and should be available by FY-09. A report documenting the basis for these models will be issued in
FY-09.

»  Intermediate Heat Exchanger: The NGNP system model will require a model for the intermediate
heat exchanger that couples the coolant system to the hydrogen production system. By FY-09,
sufficient information should be available to enable incorporating a mathematical model of the
intermediate heat exchanger into RELAP5-3D. A sufficient representation of the hydrogen
production system interface will be implemented through the use of RELAP5-3D control blocks. A
report will be issued demonstrating the functionality of the intermediate heat exchanger model as
compared to design specifications in FY-09.

To ensure the coupled CFD/systems code software can calculate integral system behavior properly, a
series of validation calculations will be performed using data from the two operational integral facilities:
HTTR in Japan and HTR-10 in China. Finally, validation of the system model will utilize data from the
scaled vessel experiments.

HTTR and HTR-10 reactors. The High Temperature Reactor-10 is a Chinese 10 MW pebble bed
gas cooled reactor that became operational in 2000 and presents an ideal source of data for validation of
pebble bed system modeling. A spectrum of experiments is planned, including perhaps a LOCA and
pressurized conduction cooldown. Portions of these data will be available through the International
Atomic Energy Agency and the Institute of Nuclear Energy Technology in Beijing. This task will
develop a system model of HTR-10 and perform validation calculations.

The High Temperature Engineering Test Reactor (HTTR) is a 30 MW prismatic gas cooled reactor
in Japan. The potential for HTTR experiments to provide high quality data for code validation is great,
but may be limited by available instrumentation and restrictions on the range of transients that may be
permitted.

System behavior calculations. NGNP system behavior during normal operation as well accidents
will be will be performed using RELAP5-3D and Fluent models of the plant at each stage of the design
process. The first complete model of the plant will be built after completion of the pre-conceptual design.
Calculations will focus on peak temperatures during the most challenging scenarios. Reports will be
issued at each design stage.
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4.4 Liquid Salt-Cooled NGNP Methods Development
and Design Assessments

The reference NGNP concept utilizes helium gas as the primary coolant based on wide-spread
experience with helium for high-temperature reactors systems as discussed in Section 1.2 and helium’s
demonstrated compatibility with high-temperature graphite fuels. Although gas coolants suffer from low
thermal capacity and thermal conductivity, most liquid coolants such as water and liquid metals are
limited in their application to very high temperature systems because of low boiling temperatures and the
associated difficulties of controlling two-phase systems. Liquid salts are an alternative to helium gas for
NGNP because they have very high boiling temperatures (up to 1400 °C) and have thermal capacities that
are orders of magnitude greater than helium gas. Table 4.5 shows several relevant thermal-physical
parameters for various reactor coolants including two candidate liquid salts. Although lead also has a
high boiling temperature, it is incompatible with high-temperature graphite fuels and dissolves most
metals at very high temperatures; hence gas and liquid salts are the only viable coolants for very high-
temperature reactors.

Table 4.5. Thermo-physical properties* of common reactor coolants.

Thoil p C pcg K v 10°

(°C)  (kg/m’)  (kJ/kg°C)  (kJ/m>C)  (W/m°C) (m?%s)
Li,BeF, (FLiBe) 1,430 1,940 2.34 4,540 1.0 2.9
0.58NaF-0.42Z1F, 1,200 3,140 1.17 3,670 ~1 0.53

Coolant

Sodium 883 790 1.27 1,000 62 0.25
Lead 1,750 10,540 0.16 1,700 16 0.13
Helium (7.5 MPa) 3.8 52 20 11.0
Water (7.5 MPa) 100 732 5.5 4,040 0.13

*p is density; C, is specific heat; K is thermal conductivity; v is viscosity.

The excellent heat transfer properties of liquid salts, compared with those of helium gas, result in
lower fuel temperatures by: (1) reducing the temperature differential between the fuel channel and the
coolant channel within the reactor core, and (2) reducing the temperature differential between the reactor
outlet and the power conversion system or hydrogen production facility. These combined effects from the
use of liquid salts as the primary coolant may result in more than a 200 °C drop in fuel temperature
relative to helium coolant. The better heat transfer capabilities of liquid salts compared with those of
helium provide for several additional benefits:

*  Design margins. The thermal design margins can be increased compared with those for gas-cooled
reactors.

*  Higher core power densities. The power densities can be increased to reduce the reactor core size or
increase the total power output. Gas-cooled reactors traditionally have very low power densities
because of poor heat transfer. With a liquid-salt coolant, the power density can be increased
significantly.

»  Improved decay heat removal. Improved heat transfer by natural circulation of the liquid salt allows
the design of larger reactors with passive safety.

There are several molten-fluoride salts that have been used in test reactors or other applications that
are applicable to the AHTR. The 2.5 MW(t) Aircraft Reactor Experiment (ARE) operated in the 1950s
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with an NaF-ZrF, molten salt, while the 8 MW(t) MSRE [Weinberg et al. 1970] operated in the 1960s
with Li,BeF, (FLiBe) molten salt in both the primary and secondary loops. Although it was never used in
a reactor, extensive investigations were performed for a ternary alkali-fluoride (LiF-NaF-KF—
“FLiNaK”) for high-temperature nuclear service. In both the ARE and the MSRE reactors, the fuel was
dissolved in the salt, whereas for the NGNP, a fuel-free salt is being considered as the primary coolant.
The term molten salt reactors discussed in the literature typically refers to reactors in which the fuel and
fission products are dissolved in the coolant and, unfortunately, leads to frequent confusion regarding the
nature of the liquid-salt-cooled reactors. Despite the confusion, there exists a large technological base of
experience gained from both of the earlier molten salt reactor programs. These programs operated major
test facilities for studying corrosion, pumps, valves, heat exchangers, and other components in liquid salt
environments up to ~850 °C. This experience is captured in a repository of more than 1000 technical
reports.

Like liquid-metal-cooled reactors, the use of liquid salts allows the system to be operated at nearly
ambient pressure, thus greatly reducing pipe and vessel thickness. This is especially important at the
elevated temperatures required for the NGNP. Therefore, the consequence of using a liquid salt versus
helium coolant is that the balance of plant may be more similar to a liquid-sodium-cooled reactor, for
which considerable technology development was performed during the period 1960-1980. Regarding the
primary reactor system, technology development needs are dominated by high-temperature fuels and
materials, regardless of the choice of coolant. Hence, although liquid salt is considered a non-traditional
reactor coolant, it offers NGNP several potential advantages with relatively few additional technology
development requirements.

441 Development of Thermal-Hydraulics Methods for Liquid-Salt-Cooled
NGNP Design

In order to design a primary reactor system that uses liquid-salt coolant, existing thermal-hydraulic
codes will need to be modified to include the thermo-physical properties of liquid salts. Two molten salt
coolants will be implemented initially into the RELAP5-3D code to support required NGNP analyses.
The salts currently being considered are Li,BeF, (FLiBe) and LiFNaFKF (FLiNaK). FLiBe is currently
the leading candidate for the primary coolant in the liquid-salt cooled version of the NGNP, while
FLiNaK is a leading candidate for the intermediate heat transport loop. The implementation of FLiBe
will be based on an existing equation of state developed from a soft-sphere model. Equations of state are
not available for FLiNaK and a simplified implementation will be based on the available property data
from ORNL. After the revised RELAPS5-3D is working, analyses will be completed to support the pre-
conceptual design of the liquid- salt-cooled NGNP. This work will be done in collaboration with related
work at ORNL.

Three deliverables will be completed in FY-05: (1) the latest version of RELAPS5-3D with the
inclusion of properties of FLiBe and FLiNaK salts will be completed, (2) a report describing this
development work will be prepared, and (3) a contribution to a year end report with ORNL presenting the
results of the liquid-salt-cooled NGNP safety analyses.

If the liquid-salt-cooled variant of NGNP is carried forward, additional development and validation
of thermal-hydraulic data and methods will be needed. Depending on the outcome of the salt selection
task, property data for additional salt compositions may need to be added to RELAP. Because earlier
molten salt reactor programs considered operating temperatures below about 750 °C, it will be necessary
to conduct experimental measurements of salt thermo-physical parameters above 750 °C. This is
especially true for thermal conductivity and heat capacity, which are difficult to measure at very high
temperatures but are parameters that are critically important for safety analyses. Also, the use of liquid
salts as the primary coolant will enable the system to operate at temperatures where radiative (infrared)
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heat transfer is important. This will require an evaluation, and possible extension, of existing thermal-
hydraulic codes to accurately model heat transfer within a coolant channel, across the gap between the
pressure vessel and guard vessel, and within the reactor cavity. Also, scaled or full-sized test loops for
integral validation of thermal-hydraulic behavior of the salt at temperatures >750 °C will be required.
This will include both normal forced circulation modes and natural circulation operation resulting from a
loss of forced circulation.

44.2 Liquid-Salt-Cooled NGNP Neutronics and Thermal-Hydrualics
Assessments

The significantly better thermo-physical properties of liquid fluoride salts relative to helium permit
a wider range of core design options. Preliminary analyses [Ingersoll, 2004] suggest that using a core
design very similar to the helium-cooled NGNP can yield a total power output of 2400 MW(t). However,
a core design optimized for liquid-salt coolant will likely be quite different, e.g. will likely be smaller
with a higher power density and may not be annular. Also, the nuclear absorption characteristics of the
coolant salt constituents can result in an increase in the core reactivity in the unlikely event of core
voiding; hence it is highly desirable to develop a core design that precludes a positive void coefficient.
During FY-05, ORNL will lead an effort of ORNL, INL, and ANL to perform neutronics and thermal
hydraulics analyses to determine pre-conceptual core design parameters such as fuel pin and coolant
channel diameters, pitch-to-diameter ratio, fuel packing fraction, etc. Reactivity coefficients
(temperature, coolant voiding, etc.) will be characterized and the preferred core volume, shape, power
density, etc. will be assessed. Specifically, INL will develop a Monte Carlo core model for the study of
key reactor physics parameters and perform safety analyses to assess passive decay heat removal
characteristics. ANL will also contribute to the neutronic analyses efforts using diffusion theory codes.

The FY-05 deliverable for this task will be a comprehensive report describing the neutronics,
thermal-hydraulics, and safety analyses performed for the liquid-salt-cooled NGNP. The report will
provide a new baseline pre-conceptual core design for the liquid-salt-cooled NGNP variant.

The FY-06 development program will involve the completion of the pre-conceptual design of the
liquid-salt-cooled NGNP, including the design of a control rod system and a balance of plant. This will
be followed in subsequent years by conceptual and final plant design. As stated previously, the liquid-
salted-cooled variant shares many technology development needs with the helium-cooled variant. This is
true for neutronics methods, which are largely driven by the ability to accurately model the double
heterogeneity effect of the coated particle fuel. However, some different or additional development needs
to the support the conceptual and final design effort are: (a) demonstration and validation of passive decay
heat removal at elevated temperatures and for higher power output, (b) experimental validation of
reactivity coefficients and feedback effects, and (c) possible measurement, evaluation, and processing of
improved nuclear data for salt constituents. Regarding the latter requirement, a sensitivity and uncertainty
analysis will need to be performed in FY-06 to assess the impact of the nuclear cross sections for the
constituents of the selected salt on the neutronics performance of the reactor core, including transients.

443 Salt Selection

There exists a wide range of liquid salts that can be considered as a primary reactor coolant.
Fluoride salts are generally agreed to be the most promising and can be combined with many single or
multiple constituents to form complex salts with widely varying properties. The choice of liquid salt is
critically important because it drives many of the other design choices, including core design, structural
materials, salt cleanup systems, and operations and maintenance considerations. ORNL will evaluate the
implications of candidate salts such as impact on core neutronics, activation and transmutation, toxicity,
material compatibilities, freeze and boil temperatures, viscosity, etc. Also, ORNL will survey previous
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data and experience on use of molten salts including those used in the ARE, MPRE and MSBR programs
to assess the current knowledge base of thermo-physical and chemical properties and performance, and
assess the status of molten salt phase diagram modeling for candidate salts.

The deliverables for FY-05 will be: (1) a letter report on the review, assessment, and
recommendations regarding the thermo-physical properties of candidate salts, and (2) a letter report on
the review, assessment, and recommendations of material compatibilities for candidate salts.

Although a considerable base of liquid salt properties and performance data exist, longer-term salt
research and development activities will be needed to advance the liquid-salt-cooled variant of the NGNP.
Material test loops will be needed to study and validate the compatibility of liquid salt with metal alloys
and carbon-composite materials to be used in NGNP. Because of the long test times needed for corrosion
tests, these need to be started as early as possible. Also, basic thermo-physical properties need to be
measured, especially above 750 °C. The extent of the required measurements will depend on the outcome
of the FY-05 review. Chemical considerations of liquid salts will also need to be studied to support the
selection of plant materials and the development of salt cleanup systems. Finally, limited work has been
done to date on phase diagram modeling for liquid salts. This work is needed to support final salt
selection and to more accurately predict salt performance, material compatibilities, fission product
retention, and cleanup.

444 Liquid-Salt-Cooled Test Reactor

A conceptual design of a relatively small scale (50 to 100 MWth) liquid-salt-cooled VHTR will be
developed. This facility will be used to test the passive safety of a liquid-salt-cooled VHTR, to test liquid
salt handling equipment, materials corrosion issues, and related topics. It will be located in the LOFT
containment building at the INL.
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